Citation: Wei-Pu DING, Jian-Da LI, Shu-Wen CHEN, Xiang-Guo LI, Qing WANG, Ai-Yong HE, Jing-Zhou YIN. Attapulgite/g-C3N4-Pt/Polyaniline Composites: Preparation and Visible Light Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 253-260. doi: 10.11862/CJIC.2022.011 shu

Attapulgite/g-C3N4-Pt/Polyaniline Composites: Preparation and Visible Light Photocatalytic Properties

  • Corresponding author: Jing-Zhou YIN, jingzhouyin@hytc.edu.cn
  • Received Date: 19 July 2021
    Revised Date: 7 November 2021

Figures(9)

  • Graphitic carbon nitride (g-C3N4), an n-type semiconductor with a narrow bandgap of 2.7 eV, has been widely studied as a visible light-driven photocatalyst for organic pollutant degradation, while attapulgite exhibits strong surface activity and adsorption capacity and can be used as support for catalysts. Herein, the hybrid material of graphite phase carbon nitride and attapulgite (ATP/g-C3N4) were chosen as the basis of polyaniline (PANI), and ATP/g-C3N4-Pt/PANI was successfully prepared by depositing Pt nanoparticles onto the surface of ATP/g-C3N4 via a simple reduction reaction, followed by the polymerization of aniline on the surface or into the channels of ATP/g-C3N4-Pt using Pt nanoparticles as a catalyst in acid solution. Methyl orange (MO), a kind of anionic dye, was used as the model system to investigate the visible light photocatalytic activity of the obtained products. The results showed that conjugated structures of PANI and g-C3N4 were well maintained in the hybrid, implying good compatibility. The photocatalyst showed remarkable visible-light photoactivity because of the synergistic effect between multicomponent materials. The degradation rate of 20 mg·L-1 MO solution was achieved to 96.3% within 80 min by using ATP/g-C3N4-Pt/PANI as the photocatalyst, and it remained at 93.5% after five cycles.
  • 加载中
    1. [1]

      Wenderich K, Mul G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review[J]. Chem. Rev., 2016,116(23):14587-14619. doi: 10.1021/acs.chemrev.6b00327

    2. [2]

      Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability?[J]. Chem Rev., 2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075

    3. [3]

      Cao S W, Yu J G. g-C3N4-Based Photocatalysts for Hydrogen Generation[J]. J. Phys. Chem. Lett., 2014,5(12):2101-2107. doi: 10.1021/jz500546b

    4. [4]

      Wang Y, Wang X C, Antonietti M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry[J]. Angew. Chem. Int. Ed., 2012,51(1):68-89. doi: 10.1002/anie.201101182

    5. [5]

      YANG B Y, LI H, SHANG N Z, FENG C, GAO S T, WANG C. Visible-Light Responsive Photocatalyst g-C3N4@BiOCl with Hollow Flower-like Structure: Preparation and Photocatalytic Performance[J]. Chinese J. Inorg. Chem., 2017,33(3):396-404.  

    6. [6]

      Gao S T, Feng T, Feng C, Shang N Z, Wang C. Novel Visible-Light-Responsive Ag/AgCl@MIL-101 Hybrid Materials with Synergistic Photocatalytic Activity[J]. J. Colloid Interface Sci., 2016,466:284-290. doi: 10.1016/j.jcis.2015.12.045

    7. [7]

      Liu P, Jiang L P, Zhu L X, Wang A Q. Attapulgite/Poly(acrylic acid) Nanocomposite (ATP/PAA) Hydrogels with Multifunctionalized Attapulgite (org-ATP) Nanorods as Unique Cross-Linker: Preparation Optimization and Selective Adsorption of Pb Ion[J]. ACS Sustainable Chem. Eng., 2013,2(4):643-651.

    8. [8]

      Xiang Y B, Zhang G L, Chen C W, Liu B, Cai D Q, Wu Z Y. Fabrication of a pH-Responsively Controlled-Release Pesticide Using an Attapulgite-Based Hydrogel[J]. ACS Sustainable Chem. Eng., 2017,6(1):1192-1201.

    9. [9]

      Zhu Z, Yu Y, Dong H J, Liu Z, Li C X, Huo P W, Yan Y S. Intercalation Effect of Attapulgite in g-C3N4 Modified with Fe3O4 Quantum Dots to Enhance Photocatalytic Activity for Removing 2-Mercaptobenzothiazole under Visible Light[J]. ACS Sustainable Chem. Eng., 2017,5(11):10614-10623. doi: 10.1021/acssuschemeng.7b02595

    10. [10]

      Wang Y Q, Feng Y, Jiang J L, Yao J F. Designing of Recyclable Attapulgite for Wastewater Treatments: A Review[J]. ACS Sustainable Chem. Eng., 2019,7(2):1855-1869. doi: 10.1021/acssuschemeng.8b05823

    11. [11]

      Zhang J, Chen A, Wang L, Li X A, Huang W. Striving Toward Visible Light Photocatalytic Water Splitting Based on Natural Silicate Clay Mineral: The Interface Modification of Attapulgite at the Atomic-Molecular Level[J]. ACS Sustainable Chem. Eng., 2016,4(9):4601-4607. doi: 10.1021/acssuschemeng.6b00716

    12. [12]

      Xu Y S, Zhang L L, Yin M H, Xie D Y, Chen J Q, Yin J Z, Fu Y S, Zhao P S, Zhong H, Zhao Y J, Wang X. Ultrathin g-C3N4 Films Supported on Attapulgite Nanofibers with Enhanced Photocatalytic Performance[J]. Appl. Surf. Sci., 2018,440:170-176. doi: 10.1016/j.apsusc.2018.01.127

    13. [13]

      SONG E P. The Research on Preparation and Absorption Properties of Polyaniline. Xi'an: Xidian University, 2014: 3-6

    14. [14]

      Li Y J, Ma L, Gan M Y, Tang J H, Hu H F, Ge C Q, Yu L, Huang H, Yang F F. Magnetic PANI Controlled by Morphology with Enhanced Microwave Absorbing Property[J]. Mater. Lett., 2015,140:192-195. doi: 10.1016/j.matlet.2014.11.024

    15. [15]

      Yu C F, Tan L, Shen S J, Fang M H, Yang L, Fu X F, Dong S Y, Sun J H. In Situ Preparation of g-C3N4/polyaniline Hybrid Composites with Enhanced Visible-Light Photocatalytic Performance[J]. J. Environ. Sci., 2021,104:317-325. doi: 10.1016/j.jes.2020.08.024

    16. [16]

      Yu J L, Liu T F, Liu H Y, Wang Y. Electro-Polymerization Fabrication of PANI@GF Electrode and Its Energy-Effective Electrocatalytic Performance in Electro-Fenton Process[J]. Chin. J. Catal., 2016,37(12):2079-2085. doi: 10.1016/S1872-2067(16)62525-1

    17. [17]

      ZHANG L L, YANG J, LI D, YANG X J, LU L D, WANG X. Electroless Polymerization of Aniline Catalyzed by Platinum Nanoparticles[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2004,28(4):432-435. doi: 10.3969/j.issn.1005-9830.2004.04.021

    18. [18]

      Heme H N, Alif M S N, Rahat S M S M, Shuchi S B. Recent Progress in Polyaniline Composites for High Capacity Energy Storage: A Review[J]. J. Energy Storage, 2021,42103018. doi: 10.1016/j.est.2021.103018

    19. [19]

      LIAO C P, SUN S G, ZHOU S M, YAO S B. Electroless Polymerization of Aniline[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001,37(2):235-238.  

    20. [20]

      Zhang L L, Liu J Q, Tang C, Lv J S, Zhong H, Zhao Y J, Wang X. Palygorskite and SnO2-TiO2 for the Photodegradation of Phenol[J]. Appl. Clay Sci., 2011,51(1/2):68-73.

    21. [21]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8(1):76-80. doi: 10.1038/nmat2317

    22. [22]

      Wang Z M, Peng X Y, Huang C Y, Chen X, Dai W X, Fu X Z. CO Gas Sensitivity and Its Oxidation Over TiO2 Modified by PANI under UV Irradiation at Room Temperature[J]. Appl. Catal. B, 2017,219:379-390. doi: 10.1016/j.apcatb.2017.07.080

    23. [23]

      Kudo A, Tsuji I, Kato H. AgInZn7S9 Solid Solution Photocatalyst for H2 Evolution from Aqueous Solutions Under Visible Light Irradiation[J]. Chem. Commun., 2002(17):1958-1959. doi: 10.1039/b204259b

    24. [24]

      Somani P R, Marimuthu R, Mulik U P, Sainkar S R, Amalnerkar D P. High Piezoresistivity and Its Origin in Conducting Polyaniline/TiO2 Composites[J]. Synth. Met., 1999,106(1):45-52. doi: 10.1016/S0379-6779(99)00081-8

    25. [25]

      WANG L, LI X, TANG Z C, ZHOU N, YU Z S, DONG Y Z, LI X Z, WEI D G, DONG Y L, LI Q H, LIU P. Preparation and Photocatalytic Performance of Bi5O7I/PANI Composites[J]. Chinese J. Inorg. Chem., 2019,35(2):271-276.  

    26. [26]

      Ahamad T, Naushad M, Alzaharani Y, Alshehri S M. Photocatalytic Degradation of Bisphenol-A with g-C3N4/MoS2-PANI Nanocomposite: Kinetics, Main Active Species, Intermediates and Pathways[J]. J. Mol. Liq., 2020,311113339. doi: 10.1016/j.molliq.2020.113339

    27. [27]

      MA S S, GU J D, GAO Y, ZONG Y Q, XUE J J, YE Z L. Preparation and Photocatalytic Activity of Holey Ultrathin g-C3N4 Nanosheets-Supported Pt Composite[J]. Chinese J. Inorg. Chem., 2021,37(8):1439-1448.  

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(0)
  • Abstract views(951)
  • HTML views(259)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return