Citation: Zhong-Qin LI, Xiao-Wei CHEN, Yan WANG, Ting CHENG, Yi HUANG, Peng-Yu DONG, Wu-You WANG, Bei-Bei ZHANG, Xin-Guo XI. Preparation of CeTiO4/g-C3N4 Composite with Efficient Photocatalytic Activity for Dye-Degradation[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 53-62. doi: 10.11862/CJIC.2022.009 shu

Preparation of CeTiO4/g-C3N4 Composite with Efficient Photocatalytic Activity for Dye-Degradation

Figures(10)

  • The composite of CeTiO4/g-C3N4-x (CTO/CN-x, x g was the addition amount of g-C3N4) was successfully prepared via a simple solid method synthesis. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), N2 adsorption-desorption test, X -ray photoelectron spectroscopy (XPS), UV -Vis diffuse reflectance spectra (UV -Vis DRS), and electrochemical test. It was found that CTO and CN layered nanoplates were closely combined to form heterostructure. CTO/CN-x composite photocatalyst exhibited outstanding visible light response, and it could improve the separation and mobility of photogenerated hole-electron pair. The photocatalytic activity of composite material was assessed by degradation of rhodamine B under simulated sunlight for 140 min. Compared to pure CTO and CN, CTO/CN-x composite showed the enhancement of photocatalytic activity, and the optimum reaction rate constant was 0.020 2 min-1 for CTO/CN-6 (The addition amount of g-C3N4 was 6 g). The enhanced photocatalytic performance was mainly ascribed to the structure of heterostructure, which could reduce the recombination of CTO photocarriers and improve the transfer of photocarriers.
  • 加载中
    1. [1]

      Koh C W, Lee U H, Song J K, Lee H R, Kim M H, Suh M, Kwon Y U. Mesoporous Titania Thin Film with Highly Ordered and Fully Accessible Vertical Pores and Crystalline Walls[J]. Chem. Asian J., 2010,3(5):862-867.  

    2. [2]

      Oveisi H, Jiang X F, Nemoto Y, Beitollahi A, Yamauchi Y. CeriumDoped Mesoporous TiO2 Thin Films: Controlled Crystallization of Anatase with Retention of Highly Ordered Mesostructure[J]. Microporous Mesoporous Mater., 2011,139(1):38-44.  

    3. [3]

      Abdullah H, Khan M R, Pudukudy M, Yaakob Z, Ismail N A. CeO2TiO2 as a Visible Light Active Catalyst for the Photoreduction of CO2 to Methanol[J]. J. Rare Earths, 2015,33(11):1155-1161. doi: 10.1016/S1002-0721(14)60540-8

    4. [4]

      Wu M Y, Zhang Y G, Szeto W, Pan W D, Huang H B, Leung D Y C. Vacuum Ultraviolet (VUV) - Based Photocatalytic Oxidation for Toluene Degradation over Pure CeO2[J]. Chem. Eng. Sci., 2019,200:203-213. doi: 10.1016/j.ces.2019.01.056

    5. [5]

      Yan D F, Mo S P, Sun Y H, Ren Q M, Feng Z T, Chen P R, Wu J L, Fu M L, Ye D Q. Morphology-Activity Correlation of Electrospun CeO2 for Toluene Catalytic Combustion[J]. Chemosphere, 2020,247125860. doi: 10.1016/j.chemosphere.2020.125860

    6. [6]

      Contreras - García M E, García - Benjume M L, Macías - Andrés V I, Barajas-Ledesma E, Medina-Flores A, Espitia-Cabrera M I. Synergic Effect of the TiO2-CeO2 Nanoconjugate System on the Band-Gap for Visible Light Photocatalysis[J]. Mater. Sci. Eng. B, 2014,183:78-85. doi: 10.1016/j.mseb.2014.01.007

    7. [7]

      Hailili R, Jacobs D L, Zang L, Wang C Y. Morphology Controlled Synthesis of CeTiO4 Using Molten Salts and Enhanced Photocatalytic Activity for CO2 Reduction[J]. Appl. Surf. Sci., 2018,456:360-368. doi: 10.1016/j.apsusc.2018.06.048

    8. [8]

      Lu X W, Li X Z, Qian J C, Miao N M, Yao C, Chen Z. Synthesis and Characterization of CeO2/TiO2 Nanotube Arrays and Enhanced Photocatalytic Oxidative Desulfurization Performance[J]. J. Alloys Compd., 2016,661:363-371. doi: 10.1016/j.jallcom.2015.11.148

    9. [9]

      Lu X W, Li X Z, Chen F, Chen Z G, Qian J C, Zhang Q. Biotemplating Synthesis of N - Doped Two - Dimensional CeO2 - TiO2 Nanosheets with Enhanced Visible Light Photocatalytic Desulfurization Performance[J]. J. Alloys Compd, 2020,815152326. doi: 10.1016/j.jallcom.2019.152326

    10. [10]

      Otsuka - Yao - Matsuo S, Omata T, Yoshimura M. Photocatalytic Behavior of Cerium Titanates, CeTiO4 and CeTi2O6 and Their Composite Powders with SrTiO3[J]. J. Alloys Compd., 2004,376(1):262-267.  

    11. [11]

      Qamaruddin M, Khan I, Ajumobi O O, Ganiyu S A, Qurashi A. Sulfur Doped Ceria - Titania (S - CeTiO4-x) Nanocomposites for Enhanced Solar-Driven Water Splitting[J]. Sol. Energy, 2019,188:890-897. doi: 10.1016/j.solener.2019.05.058

    12. [12]

      Wen J Q, Xie J, Chen X B, Li X. A Review on g-C3N4-Based Photocatalysts[J]. Appl. Surf. Sci, 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    13. [13]

      Ye S, Wang R, Wu M Z, Yuan Y P. A Review on g-C3N4 for Photocatalytic Water Splitting and CO2 Reduction[J]. Appl. Surf. Sci., 2015,358:15-27. doi: 10.1016/j.apsusc.2015.08.173

    14. [14]

      Hu S Z, Ma L, You J G, Li F Y, Fan Z P, Lu G, Liu D, Gui J Z. Enhanced Visible Light Photocatalytic Performance of g-C3N4 Photocatalysts Co-Doped with Iron and Phosphorus[J]. Appl. Surf. Sci., 2014,311:164-171. doi: 10.1016/j.apsusc.2014.05.036

    15. [15]

      Wang M J, Liu C, Zhang X B, Fan Z C, Xu J S, Tong Z W. In Situ Synthesis of CsTi2NbO7@g - C3N4 Core - Shell Heterojunction with Excellent Electrocatalytic Performance for the Detection of Nitrite[J]. J. Mater. Res., 2018,33(23):3936-3945. doi: 10.1557/jmr.2018.354

    16. [16]

      Xue J J, Ma S S, Zhou Y M, Zhang Z W, He M. Facile Photochemical Synthesis of Au/Pt/g - C3N4 with Plasmon - Enhanced Photocatalytic Activity for Antibiotic Degradation[J]. ACS Appl. Mater. Interfaces, 2015,7(18):9630-9637. doi: 10.1021/acsami.5b01212

    17. [17]

      Wang J, Xia Y, Zhao H Y, Wang G F, Xiang L, Xu J L, Komarneni S. Oxygen Defects-Mediated Z-Scheme Charge Separation in g-C3N4/ZnO Photocatalysts for Enhanced Visible - Light Degradation of 4-Chlorophenol and Hydrogen Evolution[J]. Appl. Catal. B, 2017,206:406-416. doi: 10.1016/j.apcatb.2017.01.067

    18. [18]

      Yin S, Di J, Li M, Sun Y L, Xia J X, Xu H, Fan W M, Li H M. Ionic Liquid-Assisted Synthesis and Improved Photocatalytic Activity of pn Junction g-C3N4/BiOCl[J]. J. Mater. Sci., 2016,51(10):4769-4777. doi: 10.1007/s10853-016-9746-5

    19. [19]

      Zhan S, Zhou F, Huang N B, Yang Y F, Liu Y J, Yin Y F, Fang Y N. g -C3N4/ZnWO4 Films: Preparation and Its Enhanced Photocatalytic Decomposition of Phenol in UV[J]. Appl. Surf. Sci, 2015,358:328-335. doi: 10.1016/j.apsusc.2015.07.180

    20. [20]

      Ye R Q, Fang H B, Zheng Y Z, Li N, Wang Y, Tao X. Fabrication of CoTiO 3/g-C3N4 Hybrid Photocatalysts with Enhanced H2 Evolution: Z - Scheme Photocatalytic Mechanism Insight[J]. ACS Appl. Mater. Interfaces, 2016,8(22):13879-13889. doi: 10.1021/acsami.6b01850

    21. [21]

      Ahamad T, Naushad M, Alzaharani Y, Alshehri S M. Photocatalytic Degradation of Bisphenol-A with g-C3N4/MoS2-PANI Nanocomposite: Kinetics, Main Active Species, Intermediates and Pathways[J]. J. Mol. Liq., 2020,311113339. doi: 10.1016/j.molliq.2020.113339

    22. [22]

      Lian X Y, Xue W H, Dong S, Liu E Z, Li H, Xu K Z. Construction of S-Scheme Bi2WO6/g-C3N4 Heterostructure Nanosheets with Enhanced Visible-Light Photocatalytic Degradation for Ammonium Dinitramide[J]. J. Hazard. Mater., 2021,412125217. doi: 10.1016/j.jhazmat.2021.125217

    23. [23]

      Yan J Q, Wu H, Chen H, Zhang Y, Zhang F, Liu S Z F. Fabrication of TiO2/C3N4 Heterostructure for Enhanced Photocatalytic Z-Scheme Overall Water Splitting[J]. Appl. Catal. B, 2016,191:130-137. doi: 10.1016/j.apcatb.2016.03.026

    24. [24]

      Guan J R, Wang H Q, Li J Z, Ma C C, Huo P W. Enhanced Photocatalytic Reduction of CO2 by Fabricating In2O3/CeO2/HATP Hybrid Multi-Junction Photocatalyst[J]. J. Taiwan Inst. Chem. Eng., 2019,99:93-103. doi: 10.1016/j.jtice.2019.03.007

    25. [25]

      Pudukudy M, Jia Q M, Yuan J Y, Megala S, Rajendran R, Shan S Y. Influence of CeO2 Loading on the Structural, Textural, Optical and Photocatalytic Properties of Single - Pot Sol - Gel Derived Ultrafine CeO2/TiO2 Nanocomposites for the Efficient Degradation of Tetracycline under Visible Light Irradiation[J]. Mater. Sci. Semicond. Process., 2020,108104891. doi: 10.1016/j.mssp.2019.104891

    26. [26]

      Ding J, Zhong Q, Cai H R J, Zhang S L. Structural Characterizations of Fluoride Doped CeTi Nanoparticles and Its Differently Promotional Mechanisms on Ozonation for Low-Temperature Removal of NOx (x= 1, 2)[J]. Chem. Eng. J., 2016,286:549-559. doi: 10.1016/j.cej.2015.10.055

    27. [27]

      Li H P, Liu J Y, Hou W G, Du N, Zhang R J, Tao X T. Synthesis and Characterization of g-C3N4/Bi2MoO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activity[J]. Appl. Catal. B, 2014,160-161:89-97. doi: 10.1016/j.apcatb.2014.05.019

    28. [28]

      Bai Y, Ye L Q, Wang L, Shi X, Wang P Q, Bai W, Wong P K. g-C3N4/Bi4O5I2Heterojunction with I3-/I- Redox Mediator for Enhanced Photocatalytic CO2 Conversion[J]. Appl. Catal. B, 2016,194:98-104. doi: 10.1016/j.apcatb.2016.04.052

    29. [29]

      Guo F, Huang X L, Chen Z H, Sun H R, Chen L Z. Prominent CoCatalytic Effect of CoP Nanoparticles Anchored on High-Crystalline g-C3N4 Nanosheets for Enhanced Visible-Light Photocatalytic Degradation of Tetracycline in Wastewater[J]. Chem. Eng. J., 2020,395125118. doi: 10.1016/j.cej.2020.125118

    30. [30]

      Barathi D, Rajalakshmi N, Ranjith R, Sangeetha R, Meyvel S. Controllable Synthesis of CeO2/g-C3N4 Hybrid Catalysts and Its Structural, Optical and Visible Light Photocatalytic Activity[J]. Diamond Relat. Mater., 2021,111108161. doi: 10.1016/j.diamond.2020.108161

    31. [31]

      Gao X, Feng Y, Dong P Y, Zhang B B, Chen T, Chen X W, Liu C, Xi X G, Zou Z G. Rational Design 2D/2D BiOCl/H+Ti2NbO7- Heterojunctions for Enhanced Photocatalytic Degradation Activity[J]. Appl. Surf. Sci., 2020,521146334. doi: 10.1016/j.apsusc.2020.146334

    32. [32]

      Yang C, Zhang G H, Meng Y, Pan G X, Ni Z M, Xia S J. Direct ZScheme CeO2@LDH Core - Shell Heterostructure for Photodegradation of Rhodamine B by Synergistic Persulfate Activation[J]. J. Hazard. Mater., 2021,408124908. doi: 10.1016/j.jhazmat.2020.124908

    33. [33]

      Naik S S, Lee S J, Yeon S H, Yu Y, Choi M Y. Pulsed Laser-Assisted Synthesis of Metal and Nonmetal-Codoped ZnO for Efficient Photocatalytic Degradation of Rhodamine B under Solar Light Irradiation[J]. Chemosphere, 2021,274129782. doi: 10.1016/j.chemosphere.2021.129782

    34. [34]

      Liu C, Zhu H J, Zhu Y S, Dong P Y, Hou H J, Xu Q X, Chen X W, Xi X G, Hou W H. Ordered Layered N - Doped KTiNbO5/g - C3N4 Heterojunction with Enhanced Visible Light Photocatalytic Activity[J]. Appl. Catal. B, 2018,228:54-63. doi: 10.1016/j.apcatb.2018.01.074

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    4. [4]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

Metrics
  • PDF Downloads(8)
  • Abstract views(1271)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return