Synthesis and Modification of Mesoporous Carbon Nanomaterials
- Corresponding author: Yan LI, yanli@pku.edu.cn
Citation: Sheng ZHU, Jian SHENG, Guo-Dong JIA, Han-Ding LIU, Yan LI. Synthesis and Modification of Mesoporous Carbon Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 1-13. doi: 10.11862/CJIC.2022.006
LIU M X, MIAO L, LU W J, ZHU D Z, XU Z J, GAN L H, CHEN L W. Porous Carbon Materials: Design, Synthesis and Applications in Energy Storage and Conversion Devices[J]. Chin. Sci. Bull., 2017,62(6):590-605.
Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)[J]. Pure Appl. Chem., 2015,87(9/10):1051-1069.
Roberts A D, Li X, Zhang H. Porous Carbon Spheres and Monoliths: Morphology Control, Pore Size Tuning and Their Applications as LiIon Battery Anode Materials[J]. Chem. Soc. Rev., 2014,43(13):4341-4356. doi: 10.1039/C4CS00071D
Luo X Y, Chen Y, Mo Y. A Review of Charge Storage in Porous Carbon-Based Supercapacitors[J]. New Carbon Mater., 2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5
JIAO R, SUN H X, WEI H J, MOU P, LI A. Research Progress of Porous Carbon Material Modification and Its Application in Fuel Cell[J]. New Chemical Materials, 2018,46(10):32-35.
ZHAO M Q, SI M Y, NU E L, MI H Y. Research Progress on Adsorption Properties of Porous Carbon Materials to Heavy Metal Ions[J]. Journal of Materials Science and Engineering, 2014(2):301-306.
Wang J G, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B. One-Pot Synthesis of Nitrogen-Doped Ordered Mesoporous Carbon Spheres for High-Rate and Long-Cycle Life Supercapacitors[J]. Carbon, 2018,127:85-92. doi: 10.1016/j.carbon.2017.10.084
Zhu S, Sheng J, Chen Y, Ni J F, Li Y. Carbon Nanotubes for Flexible Batteries: Recent Progress and Future Perspective[J]. Natl. Sci. Rev., 2021,8(5).
Zhao Q F, Lin Y Z, Han N, Li X, Geng H J, Wang X D, Cui Y, Wang S L. Mesoporous Carbon Nanomaterials in Drug Delivery and Biomedical Application[J]. Drug Deliv., 2017,24(2):94-107. doi: 10.1080/10717544.2017.1399300
WANG H W, WANG Y D, MAO Q L, AN G Q, CHE Q, ZHANG S J, YIN X. Sulfur-Doped Ordered Mesoporous Carbon as Fuel Cell Electrocatalyst for Oxygen Reduction[J]. Chinese J. Inorg. Chem., 2019,3:369-375. doi: 10.11862/CJIC.2019.056
Zhao J H, Shan W D, Zhang P F, Dai S. Solvent-Free and Mechanochemical Synthesis of N-Doped Mesoporous Carbon from Tannin and Related Gas Sorption Property[J]. Chem. Eng. J., 2020,381122579. doi: 10.1016/j.cej.2019.122579
Park D H, Lakhi K S, Ramadass K, Kim M K, Talapaneni S N, Joseph S, Ravon U, Al-Bahily K, Vinu A. Energy Efficient Synthesis of Ordered Mesoporous Carbon Nitrides with a High Nitrogen Content and Enhanced CO2 Capture Capacity[J]. Chem. Eng. J., 2017,23(45):10753-10757.
Lee J, Kim J, Hyeon T. Recent Progress in the Synthesis of Porous Carbon Materials[J]. Adv. Mater., 2006,18(16):2073-2094. doi: 10.1002/adma.200501576
Yuan D S, Yuan X L, Zou W J, Zeng F L, Huang X J, Zhou S L. Synthesis of Graphitic Mesoporous Carbon from Sucrose as a Catalyst Support for Ethanol Electro-Oxidation[J]. J. Mater. Chem. A, 2012,22(34):17820-17826. doi: 10.1039/c2jm33658h
Forse A C, Griffin J M, Merlet C, Carretero-Gonzalez J, Raji A R O, Trease N M, Grey C P. Direct Observation of Ion Dynamics in Supercapacitor Electrodes Using In Situ Diffusion NMR Spectroscopy[J]. Nat. Energy, 2017,2(3):1-7.
Yao L, Wu Q, Zhang P X, Zhang J M, Wang D R, Li Y L, Ren X Z, Mi H W, Deng L B, Zheng Z J. Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density[J]. Adv. Mater., 2018,30(11)1706054. doi: 10.1002/adma.201706054
Benzigar M R, Talapaneni S N, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. Recent Advances in Functionalized Micro and Mesoporous Carbon Materials: Synthesis and Applications[J]. Chem. Soc. Rev., 2018,47(8):2680-2721. doi: 10.1039/C7CS00787F
GAO X L, LI S, XING W, YAN Z F. Quinone-Modified Mesoporous Carbon/Graphene Composite with Excellent Capacitive Performance[J]. Chinese J. Inorg. Chem., 2018,34(3):507-514.
Tian M, Cui X L, Yuan M, Yang J, Ma J T, Dong Z P. Efficient Chemoselective Hydrogenation of Halogenated Nitrobenzenes over an Easily Prepared γ - Fe2O3 - Modified Mesoporous Carbon Catalyst[J]. Green Chem., 2017,19(6):1548-1554. doi: 10.1039/C6GC03386E
GAO X L, WANG D D, LI S, XING W, YAN Z F. Hydroquinone-Modified Mesoporous Carbon Nanospheres with Excellent Capacitive Performance[J]. J. Inorg. Mater., 2018,33:48-52.
Sheng J, Zhu S, Jia G D, Liu X, Li Y. Carbon Nanotube Supported Bifunctional Electrocatalysts Containing Iron-Nitrogen-Carbon Active Sites for Zinc-Air Batteries. Nano Res., 2021, https://doi.org/10.1007/s12274-021-3369-0
Zhu S, Sheng J, Jia G D, Zhang Z Y, Guo J, Wang M, Ni J F, Li Y. Monolithic Flexible Supercapacitors Drawn with Nitrogen - Doped Carbon Nanotube-Graphene Ink[J]. Mater. Res. Bull., 2021,139111266. doi: 10.1016/j.materresbull.2021.111266
Sheng J, Li Y. Applications of Carbon Nanotubes in Oxygen Electrocatalytic Reactions. ACS Appl. Mater. Interfaces, 2011, https://doi.org/10.1021/acsami.1c08104
Zhu S, Ni J F, Li Y. Carbon Nanotube-Based Electrodes for Flexible Supercapacitors[J]. Nnao Res., 2020,13(7):1825-1841. doi: 10.1007/s12274-020-2729-5
Peng X W, Zhang L, Chen Z X, Zhong L X, Zhao D K, Chi X X, Zhao X, Li L G, Lu X H, Leng K, Liu C B, Liu W, Tang W, Loh K P. Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes[J]. Adv. Mater., 2019,31(16)1900341. doi: 10.1002/adma.201900341
Xin G X, Wang Y H, Jia S P, Tian P F, Zhou S Y, Zang J B. Synthesis of Nitrogen-Doped Mesoporous Carbon from Polyaniline with an F127 Template for High - Performance Supercapacitors[J]. Appl. Surf. Sci., 2017,422:654-660. doi: 10.1016/j.apsusc.2017.06.084
Kitagawa S. Metal - Organic Frameworks (MOFs)[J]. Chem. Soc. Rev., 2014,43(16):5415-5418. doi: 10.1039/C4CS90059F
Zhan X J, Chen Z, Zhang Q C. Recent Progress in Two-Dimensional COFs for Energy - Related Applications[J]. J. Mater. Chem. A, 2017,5(28):14463-14479. doi: 10.1039/C7TA02105D
Yang L, Zeng X F, Wang W C, Cao D P. Recent Progress in MOFDerived, Heteroatom - Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells[J]. Adv. Funct. Mater., 2018,28(7)1704537. doi: 10.1002/adfm.201704537
Xie Y D, Kocaefe D Y, Chen C Y, Kocaefe Y. Review of Research on Template Methods in Preparation of Nanomaterials[J]. J. Nanomater., 2016,20162302595.
Lin T Q, Chen I W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F W. Nitrogen - Doped Mesoporous Carbon of Extraordinary Capacitance for Electrochemical Energy Storage[J]. Science, 2015,350(6267)15081513.
Yang Y, Liu Y X, Li Y, Deng B W, Yin B, Yang M B. Design of Compressible and Elastic N-Doped Porous Carbon Nanofiber Aerogels as Binder - Free Supercapacitor Electrodes[J]. J. Mater. Chem. A, 2020,8(33):17257-17265. doi: 10.1039/D0TA05423B
Zhu Y Y, Chen M M, Zhao Y, Zhao W, Wang C J. A Biomass- Derived Nitrogen - Doped Porous Carbon for High - Energy Supercapacitor[J]. Carbon, 2018,140:404-412. doi: 10.1016/j.carbon.2018.09.009
Zhao Z, Liu S L, Zhu J X, Xu J S, Li L, Huang Z Q, Zhang C, Liu T X. Hierarchical Nanostructures of Nitrogen - Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High - Performance Supercapacitors[J]. ACS Appl. Mater. Interfaces, 2018,10(23):19871-19880. doi: 10.1021/acsami.8b03431
Liang C, Hong K, Guiochon G A, Mays J W, Dai S. Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers[J]. Angew. Chem. Int. Ed., 2004,43(43):5785-5789. doi: 10.1002/anie.200461051
Chuenchom L, Kraehnert R, Smarsly B M. Recent Progress in SoftTemplating of Porous Carbon Materials[J]. Soft Matter, 2012,8(42):10801-10812. doi: 10.1039/c2sm07448f
Liu R L, Wan L, Liu S Q, Pan L X, Wu D Q, Zhao D Y. An InterfaceInduced Co-Assembly Approach towards Ordered Mesoporous Carbon/Graphene Aerogel for High - Performance Supercapacitors[J]. Adv. Funct. Mater., 2015,25(4):526-533. doi: 10.1002/adfm.201403280
Yang X, Lu P, Yu L, Pan P, Elzatahry A A, Alghamdi A, Luo W, Cheng X, Deng Y. An Efficient Emulsion-Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures[J]. Adv. Funct. Mater., 2020,30(36)2002488. doi: 10.1002/adfm.202002488
Sun Z K, Deng Y H, Wei J, Gu D, Tu B, Zhao D Y. Hierarchically Ordered Macro -/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size - Selective Adsorption of Proteins[J]. Chem. Mater., 2011,23(8):2176-2184. doi: 10.1021/cm103704s
Kueasook R, Rattanachueskul N, Chanlek N, Dechtrirat D, Watcharin W, Amornpitoksuk P, Chuenchom L. Green and Facile Synthesis of Hierarchically Porous Carbon Monoliths via Surface Self - Assembly on Sugarcane Bagasse Scaffold: Influence of Mesoporosity on Efficiency of Dye Adsorption[J]. Microporous Mesoporous Mater., 2020,296110005. doi: 10.1016/j.micromeso.2020.110005
Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K. Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for High-Voltage Aqueous Supercapacitors[J]. Chem. Mater., 2016,28(11):3944-3950. doi: 10.1021/acs.chemmater.6b01261
Xu Y X, Sheng K X, Li C, Shi G Q. Self - Assembled Graphene Hydrogel via a One-Step Hydrothermal Process[J]. ACS Nano, 2010,4(7):4324-4330. doi: 10.1021/nn101187z
Zhang F, Tang J, Wang Z, Qin L C. Graphene - Carbon Nanotube Composite Aerogel for Selective Detection of Uric Acid[J]. Chem. Phys. Lett., 2013,590:121-125. doi: 10.1016/j.cplett.2013.10.058
Bai H, Li C, Wang X L, Shi G Q. A pH-Sensitive Graphene Oxide Composite Hydrogel[J]. Chem. Commun., 2010,46(14):2376-2378. doi: 10.1039/c000051e
Bryning M B, Milkie D E, Islam M F, Hough L A, Kikkawa J M, Yodh A G. Carbon Nanotube Aerogels[J]. Adv. Mater., 2007,19(5)661664.
Zou J, Liu J, Karakoti A S, Kumar A, Joung D, Li Q, Khondaker S I, Seal S, Zhai L. Ultralight Multiwalled Carbon Nanotube Aerogel[J]. ACS Nano, 2010,4(12):7293-7302. doi: 10.1021/nn102246a
Lee H M, Kang H R, An K H, Kim H G, Kim B J. Comparative Studies of Porous Carbon Nanofibers by Various Activation Methods[J]. Carbon Lett., 2013,14(3):180-185. doi: 10.5714/CL.2013.14.3.180
Górka J, Jaroniec M. Hierarchically Porous Phenolic Resin - Based Carbons Obtained by Block Copolymer - Colloidal Silica Templating and Post - Synthesis Activation with Carbon Dioxide and Water Vapor[J]. Carbon, 2011,49(1):154-160. doi: 10.1016/j.carbon.2010.08.055
Wei L, Yushin G. Electrical Double Layer Capacitors with Activated Sucrose-Derived Carbon Electrodes[J]. Carbon, 2011,49(14):4830-4838. doi: 10.1016/j.carbon.2011.07.003
Wang J, Kaskel S. KOH Activation of Carbon - Based Materials for Energy Storage[J]. J. Mater. Chem., 2012,22(45):23710-23725. doi: 10.1039/c2jm34066f
Chen F, Yang J, Bai T, Long B, Zhou X Y. Biomass Waste-Derived Honeycomb - like Nitrogen and Oxygen Dual - Doped Porous Carbon for High Performance Lithium - Sulfur Batteries[J]. Electrochim. Acta, 2016,192:99-109. doi: 10.1016/j.electacta.2016.01.192
Sun H T, Mei L, Liang J F, Zhao Z P, Lee C, Fei H L, Ding M N, Lau J, Li M F, Wang C, Xu X, Hao G L, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X F. Three - Dimensional Holey - Graphene/Niobia Composite Architectures for Ultrahigh-Rate Energy Storage[J]. Science, 2017,356(6338):599-604. doi: 10.1126/science.aam5852
Zhang Y, Zhang L Y, Zhou C W. Review of Chemical Vapor Deposition of Graphene and Related Applications[J]. Acc. Chem. Res., 2013,46(10):2329-2339. doi: 10.1021/ar300203n
Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition[J]. Nat. Mater., 2011,10(6)424428.
Park H, Kim J W, Hong S Y, Lee G, Kim D S, Oh J H, Jin S W, Jeong Y R, Oh S Y, Yun J Y. Microporous Polypyrrole-Coated Graphene Foam for High-Performance Multifunctional Sensors and Flexible Supercapacitors[J]. Adv. Funct. Mater., 2018,28(33)1707013. doi: 10.1002/adfm.201707013
Li P X, Shi E Z, Yang Y B, Shang Y Y, Peng Q Y, Wu S T, Wei J Q, Wang K L, Zhu H W, Yuan Q, Cao A Y, Wu D H. Carbon NanotubePolypyrrole Core-Shell Sponge and Its Application as Highly Compressible Supercapacitor Electrode[J]. Nano Res., 2014,7(2):209-218. doi: 10.1007/s12274-013-0388-5
Gui X C, Wei J Q, Wang K L, Cao A Y, Zhu H W, Jia Y, Shu Q K, Wu D H. Carbon Nanotube Sponges[J]. Adv. Mater., 2010,22(5):617-621. doi: 10.1002/adma.200902986
Zhong J, Yang Z, Mukherjee R, Thomas A V, Zhu K, Sun P, Lian J, Zhu H, Koratkar N. Carbon Nanotube Sponges as Conductive Networks for Supercapacitor Devices[J]. Nano Energy, 2013,2(5):1025-1030. doi: 10.1016/j.nanoen.2013.04.001
Ferrero G, Fuertes A, Sevilla M. N-Doped Porous Carbon Capsules with Tunable Porosity for High - Performance Supercapacitors[J]. J. Mater. Chem. A, 2015,3(6):2914-2923. doi: 10.1039/C4TA06022A
Hu C G, Dai L M. Doping of Carbon Materials for Metal-Free Electrocatalysis[J]. Adv. Mater., 2019,31(7)1804672. doi: 10.1002/adma.201804672
Guo J J, Huo J J, Liu Y, Wu W J, Wang Y, Wu M H, Liu H, Wang G X. Nitrogen - Doped Porous Carbon Supported Nonprecious Metal Single-Atom Electrocatalysts: From Synthesis to Application[J]. Small Methods, 2019,3(9)1900159. doi: 10.1002/smtd.201900159
Gan G Q, Li X Y, Wang L, Fan S Y, Li J, Liang F, Chen A C. Identification of Catalytic Active Sites in Nitrogen-Doped Carbon for Electrocatalytic Dechlorination of 1, 2-Dichloroethane[J]. ACS Catal., 2019,9(12):10931-10939. doi: 10.1021/acscatal.9b02853
Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. Polyaniline-Derived N-Doped Ordered Mesoporous Carbon Thin Films: Efficient Catalysts Towards Oxygen Reduction Reaction[J]. Polymers, 2020,12(10)2382. doi: 10.3390/polym12102382
Yang Y, Liu Y X, Li Y, Deng B W, Yin B, Yang M B. Design of Compressible and Elastic N-Doped Porous Carbon Nanofiber Aerogels as Binder - Free Supercapacitor Electrodes[J]. J. Mater. Chem. A, 2020,8(33):17257-17265. doi: 10.1039/D0TA05423B
He C, Hu X J. Anionic Dye Adsorption on Chemically Modified Ordered Mesoporous Carbons[J]. Ind. Eng. Chem. Res., 2011,50(24):14070-14083. doi: 10.1021/ie201469p
Oh T, Kim M, Park D, Kim J. Synergistic Interaction and Controllable Active Sites of Nitrogen and Sulfur Co-Doping into Mesoporous Carbon Sphere for High Performance Oxygen Reduction Electrocatalysts[J]. Appl. Surf. Sci., 2018,440:627-636. doi: 10.1016/j.apsusc.2018.01.186
Yeom D Y, Jeon W, Tu N D K, Yeo S Y, Lee S S, Sung B J, Chang H, Lim J A, Kim H. High-Concentration Boron Doping of Graphene Nanoplatelets by Simple Thermal Annealing and Their Supercapacitive Properties[J]. Sci. Rep., 2015,5(1):1-10.
Sawant S V, Patwardhan A W, Joshi J B, Dasgupta K. Boron Doped Carbon Nanotubes: Synthesis, Characterization and Emerging Applications-A Review[J]. Chem. Eng. J., 2021131616.
Kaner R, Kouvetakis J, Warble C, Sattler M, Bartlett N. Boron-Carbon - Nitrogen Materials of Graphite - like Structure[J]. Mater. Res. Bull., 1987,22(3):399-404. doi: 10.1016/0025-5408(87)90058-4
Stephan O, Ajayan P, Colliex C, Redlich P, Lambert J, Bernier P, Lefin P. Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen[J]. Science, 1994,266(5191):1683-1685. doi: 10.1126/science.266.5191.1683
Zhang Y, Dai W W, Liu Y J, Ma B G. Synthesis and Characterization of Boron-Doped Ordered Mesoporous Carbon by Evaporation Induced Self-Assembly under HCl Conditions[J]. RSC Adv., 2017,7(14):8250-8257. doi: 10.1039/C6RA26841B
Yi J N, Qing Y, Wu C T, Zeng Y X, Wu Y Q, Lu X H, Tong Y X. Lignocellulose - Derived Porous Phosphorus - Doped Carbon as Advanced Electrode for Supercapacitors[J]. J. Power Sources, 2017,351:130-137. doi: 10.1016/j.jpowsour.2017.03.036
Patel M A, Luo F, Khoshi M R, Rabie E, Zhang Q, Flach C R, Mendelsohn R, Garfunkel E, Szostak M, He H. P - Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism[J]. ACS Nano, 2016,10(2):2305-2315. doi: 10.1021/acsnano.5b07054
Wu J, Jin C, Yang Z R, Tian J H, Yang R Z. Synthesis of Phosphorus -Doped Carbon Hollow Spheres as Efficient Metal-Free Electrocatalysts for Oxygen Reduction[J]. Carbon, 2015,82:562-571. doi: 10.1016/j.carbon.2014.11.008
Bai X W, Zhao E J, Li K, Wang Y, Jiao M G, He F, Sun X X, Sun H, Wu Z J. Theoretical Insights on the Reaction Pathways for Oxygen Reduction Reaction on Phosphorus Doped Graphene[J]. Carbon, 2016,105:214-223. doi: 10.1016/j.carbon.2016.04.033
Hao E C, Liu W, Liu S, Zhang Y, Wang H L, Chen S G, Cheng F L, Zhao S P, Yang H Z. Rich Sulfur Doped Porous Carbon Materials Derived from Ginkgo Leaves for Multiple Electrochemical Energy Storage Devices[J]. J. Mater. Chem. A, 2017,5(5):2204-2214. doi: 10.1039/C6TA08169J
Bandosz T J, Ren T Z. Porous Carbon Modified with Sulfur in Energy Related Applications[J]. Carbon, 2017,118:561-577. doi: 10.1016/j.carbon.2017.03.095
Li W Q, Yang D G, Chen H B, Gao Y, Li H M. Sulfur-Doped Carbon Nanotubes as Catalysts for the Oxygen Reduction Reaction in Alkaline Medium[J]. Electrochim. Acta, 2015,165:191-197. doi: 10.1016/j.electacta.2015.03.022
Marton M, Kovalčík D, Vojs M, Zdravecká E, Varga M, Michalíková L, Veselý M, Redhammer R, Písečný P. Electrochemical Corrosion Behavior of Amorphous Carbon Nitride Thin Films[J]. Vacuum, 2012,86(6):696-698. doi: 10.1016/j.vacuum.2011.07.053
Bu Y F, Sun T, Cai Y J, Du L Y, Zhuo O, Yang L J, Wu Q, Wang X Z, Hu Z. Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh - Volumetric - Performance Supercapacitors[J]. Adv. Mater., 2017,291700470. doi: 10.1002/adma.201700470
Cao B, Zhang Q, Liu H, Xu B, Zhang S L, Zhou T F, Mao J F, Pang W K, Guo Z P, Li A, Zhou J S, Chen X H, Song H H. Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium - Ion Batteries[J]. Adv. Energy Mater., 2018,8(25)1801149. doi: 10.1002/aenm.201801149
Feng Y H, Chen S H, Shen D Y, Zhou J, Lu B G. Cross - Linked Hollow Graphitic Carbon as Low-Cost and High-Performance Anode for Potassium Ion Batteries[J]. Energy Environ. Mater., 2021,4(3)451457.
Zhang W, Ming J, Zhao W, Dong X, Hedhili M N, Costa P M, Alshareef H N. Graphitic Nanocarbon with Engineered Defects for HighPerformance Potassium - Ion Battery Anodes[J]. Adv. Funct. Mater., 2019,29(35)1903641. doi: 10.1002/adfm.201903641
Yang F, Wang X, Zhang D Q, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F. Chirality-Specific Growth of Single-Walled Carbon Nanotubes on Solid Alloy Catalysts[J]. Nature, 2014,510(7506):522-524. doi: 10.1038/nature13434
Li H B, Page A J, Hettich C, Aradi B, Köhler C, Frauenheim T, Irle S, Morokuma K. Graphene Nucleation on a Surface-Molten Copper Catalyst: Quantum Chemical Molecular Dynamics Simulations[J]. Chem. Sci., 2014,5(9):3493-3500. doi: 10.1039/C4SC00491D
Zhang Z Y, Li Y T, Zhu S, Liu X, Zhao X L, Li M H, Li H Y, Yang F, Li Y. Patterning Catalyst via Inkjet Printing to Grow Single-Walled Carbon Nanotubes[J]. Chin. Chem. Lett., 2019,30(2):505-508. doi: 10.1016/j.cclet.2018.06.008
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Qiuping Liu , Yongxian Fan , Wenxian Chen , Mengdi Wang , Mei Mei , Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134