Citation: Zhi-Hui LI, Yun-Peng WANG, Wan-Lin FU, Ming-Yun ZHU, Yun-Ling CHAI, Min WU, Yue-Ming SUN, Yun-Qian DAI. Synthesis and Sintering Resistance of Pt/Fe2O3/N Doped Reduced Graphene Oxide Catalysts by Photo-Reduction Method[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 73-83. doi: 10.11862/CJIC.2022.001 shu

Synthesis and Sintering Resistance of Pt/Fe2O3/N Doped Reduced Graphene Oxide Catalysts by Photo-Reduction Method

  • Corresponding author: Yun-Qian DAI, daiy@seu.edu.cn
  • Received Date: 25 June 2021
    Revised Date: 28 October 2021

Figures(8)

  • Porous Fe2O3 nanorods and nitrogen-doped reduced graphene oxide (N-RGO) composite materials obtained by electrospinning were used as the carrier to successfully prepare clean and highly active Pt/Fe2O3/N-RGO catalyst by photoreduction method. The synthesis mechanism of the photoreduction reaction and the sintering resistance of the catalyst were further studied. During visible light irradiation, the efficient light absorption of Fe2O3 facilities the generation of photoelectrons and holes, while N-RGO highly prolongs the lifetime of photogenerated carriers. In this case, partially reduced Fe2+ in Pt/Fe2O3/N-RGO has a strong reduction ability, which can make PtCl62- reduce on the surface of Fe2O3 and nucleate rapidly, and grow into Pt nanoparticles with a diameter of about 2.13 nm. Methanol as a hole scavenger can effectively and quickly consume the photo-generated holes on the surface of the carrier, which causes the electrons accumulated in the conduction band to undergo a reduction reaction with PtCl62-, and greatly accelerates the formation rate of Pt nanoparticles. Fe2O3 nanorods with ultra-high porosity provide numerous nucleation sites for Pt nanoparticles. N-RGO sheets with abundant defects can shorten the diffusion path of Fe2O3 photocarriers and improve the efficiency of Pt photo-deposition. Besides, its characteristic wrinkle structure can act as a physical barrier to prevent Pt nanoparticles from agglomeration. Due to the strong interaction between metal and carrier, the size of Pt nanoparticles remained at 2.67 nm even after aging at 500 ℃. Pt/Fe2O3/N-RGO catalyst still had excellent thermal stability and catalytic activity after aging at 400 ℃, with a reaction rate constant of up to 22.2 L·g-1·s-1, which was about 1.6 times of that before aging.
  • 加载中
    1. [1]

      Zhao L, Wang Z B, Li J L, Zhang J J, Sui X L, Zhang L M. A NewlyDesigned Sandwich-Structured Graphene-Pt-Graphene Catalyst with Improved Electrocatalytic Performance for Fuel Cells[J]. J. Mater. Chem. A, 2015,3(5313)5320.  

    2. [2]

      Zhao H Y, Wang D W, Gao C B, Liu H Y, Han L, Yin Y D. Ultrafine Platinum/Iron Oxide Nanoconjugates Confined in Silica Nanoshells for Highly Durable Vatalytic Oxidation[J]. J. Mater. Chem. A, 2016,4:1366-1372. doi: 10.1039/C5TA09215A

    3. [3]

      Fechete I, Wang Y, Védrine J C. The Past, Present and Future of Heterogeneous Catalysis[J]. Catal. Today, 2012,189:2-27. doi: 10.1016/j.cattod.2012.04.003

    4. [4]

      Hussain S, Kongi N, Erikson H, Rähn M, Merisalu M, Matisen L, Paiste P, Aruväli J, Sammelselg V, Estudillo-Wong L A, Tammeveski K, Alonso-Vante N. Platinum Nanoparticles Photo-Deposited on SnO2C Composites: An Active and Durable Electrocatalyst for the Oxygen Reduction Reaction[J]. Electrochim. Acta, 2019,316(162)172.  

    5. [5]

      Wenderich K, Mul G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review[J]. Chem. Rev, 2016,116:14587-14619. doi: 10.1021/acs.chemrev.6b00327

    6. [6]

      Wang D K, Song Y J, Cai J Y, Wu L, Li Z H. Effective Photo-Reduction to Deposit Pt Nanoparticles on MIL - 100(Fe) for Visible - Light-Induced Hydrogen Evolution[J]. New J. Chem., 2016,40:9170-9175. doi: 10.1039/C6NJ01989G

    7. [7]

      Wang L X, Wang L, Meng X J, Xiao F S. New Strategies for the Preparation of Sinter - Resistant Metal - Nanoparticle - Based Catalysts[J]. Adv. Mater., 2019,311901905. doi: 10.1002/adma.201901905

    8. [8]

      Dai Y Q, Sun Y B, Yao J, Ling D D, Wang Y M, Long H, Wang X T, Lin B P, Zeng T H, Sun Y M. Graphene - Wrapped TiO2 Nanofibers with Effective Interfacial Coupling as Ultrafast Electron Transfer Bridges in Novel Photoanodes[J]. J. Mater. Chem. A, 2014,2:1060-1067. doi: 10.1039/C3TA13399K

    9. [9]

      Zhu J X, Zhu T, Zhou X Y, Zhang Y Y, Lou X W, Chen X D, Zhang H, Hng H H, Yan Q Y. Facile Synthesis of Metal Oxide/Reduced Graphene Oxide Hybrids with High Lithium Storage Capacity and Stable Cyclability[J]. Nanoscale, 2011,3:1084-1089. doi: 10.1039/C0NR00744G

    10. [10]

      Wang T, Li C J, Ji J Y, Wei Y J, Zhang P, Wang S P, Fan X B, Gong J L. Reduced Graphene Oxide(rGO)/BiVO4 Composites with Maximized Interfacial Coupling for Visible Light Photocatalysis[J]. ACS Sustain. Chem. Eng., 2014,2:2253-2258. doi: 10.1021/sc5004665

    11. [11]

      Fu W L, Liu K, Zou X X, Xu W L, Zhao J W, Zhu M Y, Ramakrishna S, Sun Y M, Dai Y Q. Surface Engineering of Defective Hematite Nanostructures Coupled by Graphene Sheets with Enhanced Photoelectrochemical Performance[J]. ACS Sustain. Chem. Eng., 2019,7:12750-12759. doi: 10.1021/acssuschemeng.9b01056

    12. [12]

      Cohen-Tanugi D, Grossman J C. Water Desalination across Nanoporous Graphene[J]. Nano Lett, 2012,12:3602-3608. doi: 10.1021/nl3012853

    13. [13]

      Dai Y Q, Chai Y L, Sun Y B, Fu W L, Wang X T, Gu Q, Zeng T H, Sun Y M. New Versatile Pt Supports Composed of Graphene Sheets Decorated by Fe2O3 Nanorods and N - Dopants with High Activity Based on Improved Metal/Support Interactions[J]. J. Mater. Chem. A, 2015,3:125-130. doi: 10.1039/C4TA05869K

    14. [14]

      Dai Y Q, Lu P, Cao Z M, Campbell C T, Xia Y N. The Physical Chemistry and Materials Science behind Sinter-Resistant Catalysts[J]. Chem. Rev., 2018,47:4314-4331.  

    15. [15]

      Luo L L, Engelhard M, Shao Y Y, Wang C M. Revealing the Dynamics of Platinum Nanoparticle Catalysts on Carbon in Oxygen and Water Using Environmental TEM[J]. ACS Catal., 2017,7:7658-7664. doi: 10.1021/acscatal.7b02861

    16. [16]

      Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang G H, Schüth F. Hollow Nano- and Microstructures as Catalysts[J]. Chem. Rev., 2016,116:14056-14119. doi: 10.1021/acs.chemrev.6b00374

    17. [17]

      Dai Y Q, Lim B, Yang Y, Cobley C M, Li W Y, Cho E C, Grayson B, Fanson P T, Campbell C T, Sun Y M, Xia Y N. A Sinter-Resistant Catalytic System Based on Platinum Nanoparticles Supported on TiO2 Nanofibers and Covered by Porous Silica[J]. Angew. Chem. Int. Ed., 2010,49:8165-8168. doi: 10.1002/anie.201001839

    18. [18]

      Reddy A S, Kim S, Jeong H Y, Jin S, Qadir K, Jung K, Jung C H, Yun J Y, Cheon J Y, Yang J M, Joo S H, Terasaki O, Park J Y. Ultrathin Titania Coating for High-Temperature Stable SiO2/Pt Nanocatalysts[J]. Chem. Commun., 2011,48:8412-8414.  

    19. [19]

      Shang L, Bian T, Zhang B H, Zhang D H, Wu L Z, Tung C H, Yin Y D, Zhang T R. Graphene - Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions[J]. Angew. Chem. Int. Ed., 2014,53:250-254. doi: 10.1002/anie.201306863

    20. [20]

      Zhang P, Chi M F, Sharma S, McFarland E. Silica Encapsulated Heterostructure Catalyst of Pt Nanoclusters on Hematite Nanocubes: Synthesis and Reactivity[J]. J. Mater. Chem., 2010,20:2013-2017. doi: 10.1039/b918208j

    21. [21]

      Dai Y Q, Jing Y, Zeng J, Qi Q, Wang C L, Goldfeld D, Xu C H, Zheng Y P, Sun Y M. Nanocables Composed of Anatase Nanofibers Wrapped in UV-Light Reduced Graphene Oxide and Their Enhancement of Photoinduced Electron Transfer in Photoanodes[J]. J. Mater. Chem., 2011,21:18174-18179. doi: 10.1039/c1jm13641k

    22. [22]

      Formo E, Camargo P H C, Lim B, Jiang M J, Xia Y N. Functionalization of ZrO2 Nanofibers with Pt Nanostructures: The Effect of Surface Roughness on Nucleation Mechanism and Morphology Control[J]. Chem. Phys. Lett., 2009,476:56-61. doi: 10.1016/j.cplett.2009.05.075

    23. [23]

      Bahmani P, Maleki A, Daraei H, Reza R, Mehrdad K, Saeed D, Fardin G, Amir H, Gordon M. Application of Modified Electrospun Nanofiber Membranes with α - Fe2O3 Nanoparticles in Arsenate Removal from Aqueous Media[J]. Environ. Sci. Pollut. Res., 2019,26:21993-22009. doi: 10.1007/s11356-019-05228-5

    24. [24]

      Zhang H J, Chen G H, Bahnemann D W. Photeelectrocatalytic Materials for Environmental Applications[J]. J. Mater. Chem., 2009,19:5089-5121. doi: 10.1039/b821991e

    25. [25]

      Zhao L Y, He R, Rim K T, Schiros T, Kim K S, Zhou H, Gutiérrez C, Chockalingam S P, Arguello C J, Pálová L, Nordlund D, Hybertsen M S, Reichman D R, Heinz T F, Kim P, Pinczuk A, Flynn G W, Pasupathy A N. Visualizing Individual Nitrogen Dopants in Monolayer Graphene[J]. Science, 2011,333:999-1003. doi: 10.1126/science.1208759

    26. [26]

      Chen L, Li F, Ni B B, Xu J, Fu Z P, Lu Y L. Enhanced Visible Photocatalytic Activity of Hybrid Pt/α-Fe2O3 Nanorods[J]. RSC Adv., 2012,2:10057-10063. doi: 10.1039/c2ra21897f

    27. [27]

      Gu H, Song C. Electrolytic Coloration and Spectral Properties of OH- and Cu+-Codoped NaCl Crystals[J]. J. Lumin., 2010,130:78-81. doi: 10.1016/j.jlumin.2009.07.024

    28. [28]

      Wang D K, Wang M T, Li Z H. Fe-Based Metal-Organic Frameworks for Highly Selective Photocatalytic Benzene Hydroxylation to Phenol[J]. ACS Catal., 2015,5:6852-6857. doi: 10.1021/acscatal.5b01949

    29. [29]

      Dong S H, Shi Q W, Huang W X, Jiang L L, Cai Y. Flexible Reduced Graphene Oxide Paper with Excellent Electromagnetic Interference Shielding for Terahertz Wave[J]. J. Mater. Sci. Mater. Electron., 2018,29:17245-17253. doi: 10.1007/s10854-018-9818-1

    30. [30]

      Dai Y Q, Qi X M, Fu W L, Huang C Q, Wang S M, Zhou J, Zeng T H, Sun Y M. Graphene Sheets Manipulated the Thermal-Stability of Ultrasmall Pt Nanoparticles Supported on Porous Fe2O3 Nanocrystals Against Sintering[J]. RSC Adv., 2017,7:16379-16386. doi: 10.1039/C7RA01188A

    31. [31]

      F u, W L, Dai Y Q, Li J, Liu Z B, Yang Y, Sun Y B, Huang Y Y, Ma R W, Zang L, Sun Y M. Unusual Hollow Al2O3 Nanofibers with Loofah-like Skins: Intriguing Catalyst Supports for Thermal Stabilization of Pt Nanocrystals[J]. ACS Appl. Mater. Interfaces, 2017,9:21258-21266. doi: 10.1021/acsami.7b04196

    32. [32]

      Wang X Y, Meng J Q, Zhang X Y, Liu Y Q, Ren M, Yang Y X, Guo Y H. Controllable Approach to Carbon-Deficient and Oxygen-Doped Graphitic Carbon Nitride: Robust Photocatalyst against Recalcitrant Organic Pollutants and the Mechanism Insight[J]. Adv. Funct. Mater., 2021,312010763. doi: 10.1002/adfm.202010763

    33. [33]

      Tian S B, Wang B X, Gong W B, He Z Z, Xu Q, Chen W X, Zhang Q H, Zhu Y H, Yang J Q, Fu Q, Chen C, Bu Y X, Gu L, Sun X M, Zhao H J, Wang D S, Li Y D. Dual-Atom Pt Heterogeneous Catalyst with Excellent Catalytic Performances for the Selective Hydrogenation and Epoxidation[J]. Nat. Commun., 2021,123181. doi: 10.1038/s41467-021-23517-x

    34. [34]

      Long Y P, Yuan C T, Ma H, Chen Y Q, Cong Y Q, Wang Q, Zhang Y. Preparation of CoFe2O4/MWNTs/Sponge Electrode to Enhance Dielectric Barrier Plasma Discharge for Degradation of Phenylic Pollutants and Cr(Ⅵ) Reduction[J]. Appl. Catal. B, 2021,283119604. doi: 10.1016/j.apcatb.2020.119604

    35. [35]

      Zou J P, Chen X, Liu S S, Xing Q J, Dong W H, Luo X B, Dai W L, Xiao X, Luo J M, Crittenden J. Electrochemical Oxidation and Advanced Oxidation Processes Using a 3D Hexagonal Co3O4 Array Anode for 4-Nitrophenol Decomposition Coupled with Simultaneous CO2 Conversion to Liquid Fuels via a Flower - like CuO Cathode[J]. Water Res., 2018,11:330-339.  

    36. [36]

      Neal R D, Hughes R A, Sapkota P, Ptasinska S, Neretina S. Effect of Nanoparticle Ligands on 4 - Nitrophenol Reduction: Reaction Rate, Induction Time, and Ligand Desorption[J]. ACS Catal., 2020,101004010050.  

    37. [37]

      Jin Q J, Ma L, Zhou W, Chintalapalle R, Shen Y S, Li X J. Strong Interaction between Au Nanoparticles and Porous Polyurethane Sponge Enables Efficient Environmental Catalysis with High Reusability[J]. Catal. Today, 2020,358:246-253. doi: 10.1016/j.cattod.2020.01.023

    38. [38]

      Liu S Y, Lai C, Li B S, Zhang C, Zhang M M, Huang D L, Qin L, Yi H, Huang F, Zhou X R, Chen L. Role of Radical and Non-Radical Pathway in Activating Persulfate for Degradation of p-Nitrophenol by Sulfur - Doped Ordered Mesoporous Carbon[J]. Chem. Eng. J., 2020,384123304. doi: 10.1016/j.cej.2019.123304

    39. [39]

      Strachan J, Barnett C, Masters A F, Maschmeyer T. 4 - Nitrophenol Reduction: Probing the Putative Mechanism of the Model Reaction[J]. ACS Catal., 2020,10:5516-5521. doi: 10.1021/acscatal.0c00725

    40. [40]

      Jin Q J, Ma L, Zhou W, Shen Y S, Fernandez - Delgado O, Li X J. Smart Paper Transformer: New Insight for Enhanced Catalytic Efficiency and Reusability of Noble Metal Nanocatalysts[J]. Chem. Sci, 2020,11:2915-2925. doi: 10.1039/C9SC05287A

    41. [41]

      Yang X C, Sun J K, Kitta M, Pang H, Xu Q. Encapsulating Highly Catalytically Active Metal Nanoclusters Inside Porous Organic Cages[J]. Nat. Catal., 2018,1:214-220. doi: 10.1038/s41929-018-0030-8

    42. [42]

      Studer S, Hansen D A, Pianowski Z L, Mitt P R E, Debon A, Guffy S L, Der B S, Kuhlman B, Hilvert D. Evolution of a Highly Active and Enantiospecific Metalloenzyme from Short Peptides[J]. Science, 2018,362:1285-1288. doi: 10.1126/science.aau3744

    43. [43]

      Li W Z, Kovarik L, Mei D H, Liu J, Wang Y, Peden C. Stable Platinum Nanoparticles on Specific MgAl2O4 Spinel Facets at High Temperatures in Oxidizing Atmospheres[J]. Nat. Commun, 2013,42481. doi: 10.1038/ncomms3481

    44. [44]

      Hao Y G, Shao X K, Li B X, Hu L Y, Wang T. Mesoporous TiO2 Nanofibers with Controllable Au Loadings for Catalytic Reduction of 4-Nitrophenol[J]. Mater. Sci. Semicond. Process., 2015,40:621-630. doi: 10.1016/j.mssp.2015.07.026

    45. [45]

      Akbarzadeh E, Bahrami F, Gholami M R. Au and Pt Nanoparticles Supported on Ni Promoted MoS2 as Efficient Catalysts for pNitrophenol Reduction[J]. J. Water Process Eng., 2020,34101142. doi: 10.1016/j.jwpe.2020.101142

    46. [46]

      Dandapat A, Jana D, De G. Synthesis of Thick Mesoporous γ-Alumina Films, Loading of Pt Nanoparticles, and Use of the Composite Film as a Reusable Catalyst[J]. ACS Appl. Mater. Interfaces, 2009,1:833-840. doi: 10.1021/am800241x

    47. [47]

      Cheng P, Liu Y, Yi Z B, Wang X, Li M F, Liu Q Z, Liu K, Wang D. In Situ Prepared Nanosized Pt - Ag/PDA/PVA - co - PE Nanofibrous Membrane for Highly-Efficient Catalytic Reduction of p-Nitrophenol[J]. Compos. Commun., 2018,9:11-16. doi: 10.1016/j.coco.2018.04.004

    48. [48]

      Ye W C, Yu J, Zhou Y X, Gao D Q, Wang D A, Wang C M, Xue D S. Green Synthesis of Pt-Au Dendrimer-like Nanoparticles Supported on Polydopamine - Functionalized Graphene and Their High Performance toward 4 - Nitrophenol Reduction[J]. Appl. Catal. B, 2016,181:371-378. doi: 10.1016/j.apcatb.2015.08.013

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    11. [11]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    17. [17]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    18. [18]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

Metrics
  • PDF Downloads(24)
  • Abstract views(1400)
  • HTML views(324)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return