Citation: Yan-Ling LIU. Synthesis and Performance of a Rapid Turn-On Fluorescent Probe for ClO-[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2244-2248. doi: 10.11862/CJIC.2021.259 shu

Synthesis and Performance of a Rapid Turn-On Fluorescent Probe for ClO-

  • Corresponding author: Yan-Ling LIU, 20001015@llu.edu.cn
  • Received Date: 30 September 2021
    Revised Date: 14 November 2021

Figures(8)

  • We synthesized a new type of ClO- fluorescence probe using 2, 7-dibromo-9-fluorenone as raw material by two-step conventional reaction. In phosphate buffered saline (PBS), with the increase of ClO-, the emission of the probe at 511 nm gradually enhanced, presenting green fluorescence emission. The probe reacted with ClO- quickly and the reaction was completed within 10 s. In addition, the present method exhibited high sensitivity to ClO- with a limit of detection of 0.74 μmol·L-1. Cell image experiments showed that the probe could detect endogenous and exogenous ClO- at the cellular level.
  • 加载中
    1. [1]

      Huang Y F, Zhang Y B, Huo F J, Chao J B, Yin C X. A Near-Infrared Ratiometric Fluorescent Probe with Large Stokes Based on Isophorone for Rapid Detection of ClO- And Its Bioimaging in Cell and Mice[J]. Sens. Actuators B, 2019,287:453-458. doi: 10.1016/j.snb.2019.02.075

    2. [2]

      LIU H Q, PENG C, CHEN N, LIU Y P. Novel Fluorescent/EPR Difunctional Probe for Detecting Hypochlorite[J]. Chem. J. Chinese Universities, 2017,38(9):1542-1548.  

    3. [3]

      YU Q, CHEN X L, LIU H, ZHANG Q L. Recent Progress in Colorimetric and Fluorimetric Probes for the Detection of Hypochlorous Acid[J]. Chin. J. Org. Chem., 2020,40(5):1206-1231.  

    4. [4]

      ZHANG W J, HUO F J, YIN C X. A Coumarin Based Ratiometric Fluorescent Probe for Fast Sensing of Hypochlorite[J]. Chinese Journal of Applied Chemistry, 2017,34(12):1457-1461. doi: 10.11944/j.issn.1000-0518.2017.12.170311

    5. [5]

      Pattison D I, Davies M J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds[J]. Chem. Res. Toxicol., 2001,14(10):1453-1464. doi: 10.1021/tx0155451

    6. [6]

      Wei F F, Lu Y, He S, Zhao L C, Zeng X S. Highly Sensitive Flfluorescent Chemosensor for Hypochlorite Anion Based on a Novel Irreversible Ring-Opening Strategy[J]. Anal. Methods, 2012,4:616-618. doi: 10.1039/c2ay05788c

    7. [7]

      ZHAO Y, LI Y F, LI R X, WANG Y Q, FAN X X. A New Fluorescent Probe for Hypochlorous Acid Based on Chlorinium Ions Recognition Mechanism and Its Bioimaging Research in Living Cells[J]. Chin. J. Org. Chem., 2021,41(5):1974-1981.  

    8. [8]

      SHEN Y M, YANG Y F, GU B. A Novel Fluorescent Probe Based on Phenanthroimidazole for Hypochlorite and Its Cell Imaging Application[J]. J. Instrum. Anal., 2020,39(8):961-966. doi: 10.3969/j.issn.1004-4957.2020.08.003

    9. [9]

      Wang X Z, Zhou L, Qiang F, Wang F Y, Wang R, Zhao C C. Development of a Bodipy-Based Ratiometric Fluorescent Probe for Hypochlorous Acid and Its Application in Living Cells[J]. Anal. Chim. Acta, 2016,911:114-120. doi: 10.1016/j.aca.2016.01.022

    10. [10]

      YIN C X, XIONG K M, HUO F J. Application of 7-Hydroxylcoumarin-Aldehyde in the Detection of Hypochlorite[J]. Journal of Hebei University (Natural Science Edition), 2018,38(1):28-32. doi: 10.3969/j.issn.1000-1565.2018.01.005

    11. [11]

      LI M, GUO J, FENG X Y, ZHOU X H, ZHANG D, FU B, WANG T L. Synthesis and Spectral Characterization of Novel Ratiometric Fluorescence Probe of ClO-[J]. Chemical Reagents, 2021,43(1):100-104.  

    12. [12]

      AN N, GAO Y L. Reaction-Based Fluorescent Probes for Detection of HClO/ClO-[J]. Chemical Industry and Engineering Progress, 2021,40(6):3346-3362.  

    13. [13]

      CHEN L Y, WU D. An Excited-State Intramolecular Proton Transfer-Based Ratiometric Fluorescence Probe for Detection of Hypochlorite[J]. Chin. J. Anal. Chem., 2021,49(8):1350-1360.  

    14. [14]

      Kang J, Huo F J, Yue Y K, Wen Y, Chao J B, Zhang Y B, Yin C X. A Solvent Depend on Ratiometric Fluorescent Probe for Hypochlorous Acid and Its Application in Living Cells[J]. Dyes Pigm., 2017,136:852-858. doi: 10.1016/j.dyepig.2016.09.048

    15. [15]

      Cheng G H, Fan J L, Sun W, Sui K, Jin X, Wang J Y, Peng X J. A Highly Specific Bodipy-Based Probe Localized in Mitochondria for Hclo Imaging[J]. Analyst, 2013,138:6091-6096. doi: 10.1039/c3an01152f

    16. [16]

      Chen X Q, Lee K, Ren X T, Ryu J C, Kim G, Ryu J H, Lee W, Yoon J. Synthesis of a Highly HOCl Selective Fluorescent Probe and Its Use for Imaging HOCl in Cells and Organisms[J]. Nat. Protoc., 2016,11(7):1219-1228. doi: 10.1038/nprot.2016.062

    17. [17]

      Xu Q L, Lee K, Lee S, Lee K M, Lee W, Yoon J. A Highly Specific Fluorescent Probe for Hypochlorous Acid and Its Application in Imaging Microbe-Induced HOCl Production[J]. J. Am. Chem. Soc., 2013,135(26):9944-9949. doi: 10.1021/ja404649m

    18. [18]

      Zhou J, Li L H, Shi W, Gao X H, Li X H, Ma H M. HOCl can Appear in the Mitochondria of Macrophages During Bacterial Infection as Revealed by a Sensitive Mitochondrial-Targeting Fluorescent Probe[J]. Chem. Sci., 2015,6(3):4884-4888.

    19. [19]

      Zhang Y R, Zhao Z M, Miao J Y, Zhao B X. A Ratiometric Fluorescence Probe Based on a Novel Fret Platform for Imaging Endogenous HOCl in The Living Cells[J]. Sens. Actuators B, 2016,229:408-413. doi: 10.1016/j.snb.2016.01.146

    20. [20]

      Cao L Y, Zhang R, Zhang W Z, Du Z B, Liu C J, Ye Z Q, Song B, Yuan J L. A Ruthenium (Ⅱ) Complex-Based Lysosome-Targetable Multisignal Chemosensor for In Vivo Detection of Hypochlorous Acid[J]. Biomaterials, 2015,68:21-31. doi: 10.1016/j.biomaterials.2015.07.052

    21. [21]

      Xu C G, Zhou Y M, Zhou Y H, Li Z G, Peng X J. A Facile Ratiometric Sensing Platform Based on Inner Filter Effect for Hypochlorous Acid Detection[J]. Sens. Actuators B, 2020,325:1-9.  

    22. [22]

      Fan J L, Mu H Y, Zhu H, Wang J Y, Peng X J. Light up ClO- in Live Cells Using an Aza-Coumarin Based Fluorescent Probe with Fast Response and High Sensitivity[J]. Analyst, 2015,140:4594-4598. doi: 10.1039/C5AN00777A

    23. [23]

      ZHANG Y, SHEN C, XING Z R, CHEN G Q, LU Z, HOU Z B, CHEN X M. Benzimidazole-Derived Fluorescence Enhancement Probe for Visual Detection of HClO[J]. Chem. J. Chinese Universities, 2019,40(12):2480-2485. doi: 10.7503/cjcu20190366

    24. [24]

      Liu J W, Yin Z. A Novel NIR-Emissive Probe with Large Stokes Shift for Hypochlorite Detection and Imaging in Living Cells[J]. Talanta, 2019,196:352-356. doi: 10.1016/j.talanta.2018.12.086

    25. [25]

      ZHANG J J, YAN M, LU W, XU L, WANG X Q. Design, Synthesis and Fluorescence Imaging Application of Hypochlorite Probe Based on Coumarin-oxime[J]. Chinese J. Inorg. Chem., 2021,37(6):1071-1079.  

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(8)
  • Abstract views(1335)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return