Citation: Lin LI, Jia-Wei WANG, Yu-Jin HUO, Cai-Feng SUN, Han-Yue ZHANG, Cai-Feng ZHANG. Preparation of Polyvinylpyrrolidone-Protected Fluorescent Copper Nanoclusters for Rapid and Accurate Detection of Ethanol[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2113-2124. doi: 10.11862/CJIC.2021.258 shu

Preparation of Polyvinylpyrrolidone-Protected Fluorescent Copper Nanoclusters for Rapid and Accurate Detection of Ethanol

Figures(10)

  • Accurate quantitative detection of ethanol (EtOH) content is essential for environmental monitoring, clinical diagnosis, food testing, and drinking alcohol. A simple and green fluorescence colorimetry method utilizing sonochemical reduction method for the rapid and efficient detection of EtOH in alcoholic beverages has been established. The fluorescent copper nanoclusters (PVP-Cu NCs) were synthesized by using CuCl2 as a copper source, 2-mercaptobenzothiazole (MBT) as a stabilizing agent, polyvinylpyrrolidone (PVP) as a protecting agent and ascorbic acid (AA) as a reducing agent. The resultant PVP-Cu NCs had a spherical shape with an average diameter of 6.0 nm and a strong fluorescent orange emission characteristic peak at 580 nm upon 340 nm excitation. The fluorescence copper nanoclusters possessed the advantages of excellent time, ultraviolet radiation and salt resistance stability. We found that PVP-Cu NCs had a good responsiveness to EtOH, and the fluorescence intensity was inversely proportionate to the EtOH volume fractions between 5% and 45% as a consequence of inducing aggregation of PVP-Cu NCs via changing its double layer and affecting its stability in the studied system. Based on the established calibration, the EtOH content was effectively evaluated with good precision. Furthermore, visible color transformation of this sensor paper was observed in the EtOH content range of 20%-60%, implying utility for visual EtOH detection. It is worth mentioning that the assay was successfully applied for the quantification of EtOH in commercial drink samples and the satisfying results were obtained.
  • 加载中
    1. [1]

      Yeh T M, Yang L, Wang X, Mahajan D, Hsiao B S, Chu B. Polymeric Nanofibrous Composite Membranes for Energy Efficient Ethanol Dehydration[J]. J. Renew. Sustain. Energy, 2012,4(4)041406. doi: 10.1063/1.4739760

    2. [2]

      WANG Q, WANG X Q, ZHU Y C, ZHANG J. Determination of the Content of Ethanol in Herba Epimedium and Astragalus Healthcare Wine[J]. Modern Food, 2019,20(20):155-159.  

    3. [3]

      Tipparat P, Lapanantnoppakhun S, Jakmunee J, Grudpan K. Determination of Ethanol in Liquor by Near-Infrared Spectrophotometry with Flow Injection[J]. Talanta, 2001,53(6):1199-1204. doi: 10.1016/S0039-9140(00)00610-X

    4. [4]

      Stupak M, Kocourek V, Kolouchova I, Hajslova J. Rapid Approach for the Determination of Alcoholic Strength and Overall Quality Check of Various Spirit Drinks and Wines Using GC-MS[J]. Food Control, 2017,80:307-313. doi: 10.1016/j.foodcont.2017.05.008

    5. [5]

      Yarita T, Nakajima R, Otsuka S, Ihara T, Takatsu A, Shibukawa M. Determination of Ethanol in Alcoholic Beverages by High-Performance Liquid Chromatography-Flame Ionization Detection Using Pure Water as Mobile Phase[J]. J. Chromatogr. A, 2002,976(1/2):387-391.  

    6. [6]

      Ün I, Goren A C. Accurate Determination of Ethanol in Water by qNMR: Validation and Uncertainty Assessment[J]. J. Chem. Metrol., 2017,11(1):9-15. doi: 10.25135/jcm.2.17.03.035

    7. [7]

      Bilgi M, Ayranci E. Biosensor Application of Screen-Printed Carbon Electrodes Modified with Manomaterials and a Conducting Polymer: Ethanol Biosensors Based on Alcohol Dehydrogenase[J]. Sens. Actuators B, 2016,237:849-855. doi: 10.1016/j.snb.2016.06.164

    8. [8]

      Ozdokur K V, Demir B, Atman E, Tatli A Y, Yilmaz B, Demirkol D O, Kocak S, Timur S, Ertas F N. A Novel Ethanol Biosensor on Pulsed Deposited MnOx-MoOx Electrode Decorated with Pt Nanoparticles[J]. Sens. Actuators B, 2016,237:291-297. doi: 10.1016/j.snb.2016.06.100

    9. [9]

      Hooda V, Gahlaut A, Hooda V. A Novel Amperometric Biosensor for Rapid Detection of Ethanol Utilizing Gold Nanoparticles and Enzyme Coupled PVC Reaction Cell[J]. Environ. Technol., 2020,1399:1-28.  

    10. [10]

      Byoun Y M, Park S Y, Jin C H, Song Y J, Choi S W. Highly Sensitive and Selective Ethanol Detection at Room Temperature Utilizing Holey SWCNT-Sn/SnO2 Nanocomposites Synthesized by Microwave Irradiation[J]. Sens. Actuators B, 2019,290:467-476. doi: 10.1016/j.snb.2019.04.001

    11. [11]

      Peng H Y, Wang W, Gao F H, Lin S, Ju X J, Xie R, Liu Z, Faraj Y, Chu L Y. Smart Hydrogel Gratings for Sensitive, Facile, and Rapid Detection of Ethanol Concentration[J]. Ind. Eng. Chem. Res., 2019,58:17833-17841. doi: 10.1021/acs.iecr.9b03395

    12. [12]

      HUANG H, LI C G, SHI Z, FENG S H. Microwave-Assisted Hydrothermal Synthesis of Carbon Dots Based on Tyrosine and Their Application in Ion Detection and Bioimaging[J]. Chem. J. Chinese Universities, 2019,40(4):1579-1585.  

    13. [13]

      Ding Y B, Zhu W H, Xie Y S. Development of Ion Chemosensors Based on Porphyrin Analogues[J]. Chem. Rev., 2017,117(4):2203-2256. doi: 10.1021/acs.chemrev.6b00021

    14. [14]

      WANG J J, QI S L, DU J S, YANG Q B, SONG Y, LI Y X. Synthesis of Benzothiazole Fluorescent Probe for Detection of N2H4·H2O and HSO3-[J]. Chem. J. Chinese Universities, 2019,40(7):1397-1404.  

    15. [15]

      XUE Y R, LI H W, WU Y Q. Carbon Dots Based-on Polyethyleneimines as a Ratiometric Fluorescent Sensor of Morin[J]. Chem. J. Chinese Universities, 2020,41(7):1531-1536.  

    16. [16]

      Zhang L B, Wang E K. Metal Nanoclusters: New Fluorescent Probes for Sensors and Bioimaging[J]. Nano Today, 2014,9(1):132-157. doi: 10.1016/j.nantod.2014.02.010

    17. [17]

      Zou H Y, Lan J, Huang C Z. Dopamine Derived Copper Nanocrystals Used as an Efficient Sensing, Catalysis and Antibacterial Agent[J]. RSC Adv., 2015,5:55832-55838. doi: 10.1039/C5RA06240C

    18. [18]

      Aparna R S, Anjali Devi J S, Anjana R R, Nebu J, George S. Zn(Ⅱ) Ion Modulated Red Emitting Copper Nanocluster Probe for the Fluorescence Turn on Sensing of RDX[J]. Sens. Actuators B, 2019,291:298-305. doi: 10.1016/j.snb.2019.04.051

    19. [19]

      Li Y Y, He Y, Ge Y L, Song G W, Zhou J G. Different Fluorescence Emitting Copper Nanoclusters Protected by Egg White and Doubleemission Fluorescent Probe for Fast Detection of Ethanol[J]. Microchim. Acta, 2021,188:101-110.  

    20. [20]

      Li L, Chen J, Li Y, Song N, Zhu L L, Li Z Y. Synthesis of Fluorescent Pink Emitting Copper Nanoparticles and Sensitive Detection of α-Naphthaleneacetic Acid[J]. Spectrochim. Acta Part A, 2020,224117433.  

    21. [21]

      Hu X, Liu T T, Zhuang Y X, Wang W, Li Y Y, Fan W H, Huang Y M. Recent Advances in the Analytical Applications of Copper Nanoclusters[J]. Trac-Trends. Anal. Chem., 2016,77:66-75.  

    22. [22]

      Wen Z Q, Song S L, Wang C X, Qu F D, Thomas T, Hu T T, Wang P, Yang M H. Large-Scale Synthesis of Dual-Emitting-Based Visualization Sensing Paper for Humidity and Ethanol Detection[J]. Sens. Actuators B, 2019,282:9-15.  

    23. [23]

      Wang Y, Chen T X, Zhuang Q F, Ni Y N. Label-Free Photoluminescence Assay for Nitrofurantoin Detection in Lake Water Samples Using Adenosine-Stabilized Copper Nanoclusters as Nanoprobes[J]. Talanta, 2018,179:409-413.

    24. [24]

      Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh S S, Chattopadhyay A. Transferrin-Copper Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug[J]. ACS Appl. Mater. Interfaces, 2018,10(4):3282-3294.

  • 加载中
    1. [1]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    5. [5]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    6. [6]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    7. [7]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    8. [8]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    11. [11]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(14)
  • Abstract views(2430)
  • HTML views(512)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return