Citation: Mu-Ge SHELE, Cui-Xia DU, Xin-Yu TIAN, Meng-He BAIYIN. Solvothermal Synthesis and Properties of Quaternary Chalcogenides Containing Transition Metals Cadmium or Mercury[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2149-2157. doi: 10.11862/CJIC.2021.255 shu

Solvothermal Synthesis and Properties of Quaternary Chalcogenides Containing Transition Metals Cadmium or Mercury

  • Corresponding author: Meng-He BAIYIN, baiymh@imnu.edu.cn
  • Received Date: 7 May 2021
    Revised Date: 8 October 2021

Figures(13)

  • Two quaternary chalcogenides Rb2CdSbS3(SH) (1) and Rb2HgSb4S8 (2) were synthesized by solvothermal method. Single crystal X-ray diffraction analysis shows that compound 1 is 1D chain structure and composed of[CdSbS3(SH)]2- anion and Rb+ cation. Compound 2 is a 2D layered structure and composed of[HgSb4S8]2- anion and Rb+ cation. Solid-state UV-Vis diffuse reflectance spectra showed that the band gaps of compounds 1 and 2 were 2.06 and 2.15 eV, respectively. Fluorescence analysis showed that compounds 1 and 2 had yellow emission characteristics.
  • 加载中
    1. [1]

      Abudurusuli A, Wu K, Tudi A, Yang Z H, Pan S L. ABaSbQ3 (A=Li, Na; Q=S, Se): Diverse Arrangement Modes of Isolated SbQ3 Ligands Regulating the Magnitudes of Birefringences[J]. Chem. Commun., 2019,55:5143-5146. doi: 10.1039/C9CC00560A

    2. [2]

      Ma N, Li Y Y, Chen L, Wu L M. α-CsCu5Se3: Discovery of a Low-Cost Bulk Selenide with High Thermoelectric Performance[J]. J. Am. Chem. Soc., 2020,142:5293-5303. doi: 10.1021/jacs.0c00062

    3. [3]

      Mei D J, Yin W L, Feng K, Lin Z S, Bai L, Yao J Y. LiGaGe2Se6: A New IR Nonlinear Optical Material with Low Melting Point[J]. Inorg. Chem., 2012,51:1035-1040. doi: 10.1021/ic202202j

    4. [4]

      Chen M C, Li L H, Chen Y B, Chen L. In-Phase Alignments of Asymmetric Building Units in Ln4GaSbS9(Ln=Pr, Nd, Sm, Gd-Ho) and Their Strong Nonlinear Optical Responses in Middle IR[J]. J. Am. Chem. Soc., 2011,133:4617-4624. doi: 10.1021/ja1111095

    5. [5]

      Zheng Y J, Shi Y F, Tian C B, Lin H, Wu L M, Wu X T, Zhu Q L. An Unprecedented Pentanary Chalcohalide with Mn Atoms in Two Chemical Environments: Unique Bonding Characteristics and Magnetic Properties[J]. Chem. Commun., 2019,55:79-82. doi: 10.1039/C8CC08380K

    6. [6]

      Heppke E M, Klenner S, Janka O, Pöttgen R, Lerch M. Mechanochemical Synthesis of Cu2MgSn3S8 and Ag2MgSn3S8[J]. Z. Anorg. Allg. Chem., 2020,646:5-9. doi: 10.1002/zaac.201900190

    7. [7]

      JIANG H, WANG X, SHENG T L, HU S M, FU R B, WEN Y H, SHEN C J, YUAN N, WU X T. Solvothermal Synthesis and Characterization of a Novel Selenidoantimonate: [M1(C4H13N3)2]n[M2Sb2Se5]n (M1=Mn, Co; M2=Zn, Cd)[J]. Sci. Sin. Chim., 2011,41(4):726-731.

    8. [8]

      Shele M G, Qi F Y, Tian X Y, Bao Y S, Baiyin M H. Preparation of 0-2 Dimensional Organic-Decorated Quaternary TM-Cd-Sb-Se (TM=Zn, Mn, Fe) Compounds by Solvothermal Method: Syntheses, Crystal Structures and Properties[J]. J. Solid State Chem., 2021,296121964. doi: 10.1016/j.jssc.2021.121964

    9. [9]

      Yue C Y, Lei X W, Liu R Q, Zhang H P, Zhai X R, Li W P, Zhou M, Zhao Z F, Ma Y X. Syntheses, Crystal Structures, and Photocatalytic Properties of a Series of Mercury Thioantimonates Directed by Transition Metal Complexes[J]. Cryst. Growth Des., 2014,14(5):2411-2421. doi: 10.1021/cg500153u

    10. [10]

      Wang K Y, Ye D, Zhou L J, Feng M L, Huang X Y. Novel Mercury Selenidoantimonates with Structures Ranging from One-Dimensional Ribbon to Three-Dimensional Open-Framework[J]. Dalton Trans., 2013,42(15):5454-5461. doi: 10.1039/c3dt32676d

    11. [11]

      Zhang M, Sheng T L, Wang X, Hu S M, Fu R B, Chen J S, He Y M, Qin Z T, Shen C J, Wu X T. Synthesis and Crystal Structure of Two New Heterometallic Thioantimonates (Ⅲ)[Ni(pda)2]Cu4Sb2S6 and[Ni(dien)2]CuSb3S6[J]. CrystEngComm, 2010,12:73-76. doi: 10.1039/B906640C

    12. [12]

      Yue C Y, Lei X W, Ma Y X, Sheng N, Yang Y D, Liu G D, Zhai X R. [TM(en)3][SnSb4S9] (TM=Ni, Co): 3D Chiral Framework of Mixed Main-Group Metals and[Mn(dien)2]2Sb4S9: 1D Chains with Mixed-Valent Sb Centers[J]. Cryst. Growth Des., 2014,14:101-109. doi: 10.1021/cg401208p

    13. [13]

      Zhang B, Li W A, Liao Y Y, Zhang C, Feng M L, Huang X Y. [CH3NH3]4Ga4SbS9S0.28O0.72H: A Three-Dimensionally Open-Framework Heterometallic Chalcogenidoantimonate Exhibiting Ni2+ Ion-Exchange Property[J]. Chem. Asian J., 2018,13:672-678. doi: 10.1002/asia.201701763

    14. [14]

      Yao H G, Zhou P, Ji S H, Zhang R C, Ji M, An Y L, Ning G L. Syntheses and Characterization of a Series of Silver-Thioantimonates (Ⅲ) and Thioarsenates(Ⅲ) Containing Two Types of Silver-Sulfur Chains[J]. Inorg. Chem., 2010,49:1186-1190. doi: 10.1021/ic902084u

    15. [15]

      Shen Y Y, Liu C, Hou P P, Zhi M J, Zhou C M, Chai W X, Zhang Q C, Liu Y. Facile Surfactant-Thermal Syntheses and Characterization of Quaternary Copper Thioantimonates (Ⅲ) ACu2SbS3(A=K, Rb, Cs)[J]. J. Alloys Compd., 2016,660:171-177. doi: 10.1016/j.jallcom.2015.11.075

    16. [16]

      Liu C, Shen Y Y, Hou P P, Zhi M J, Zhou C M, Chai W X, Cheng J W, Liu Y. Hydrazine-Hydrothermal Synthesis and Characterization of the Two New Quaternary Thioantimonates (Ⅲ) BaAgSbS3 and BaAgSbS3·H2O[J]. Inorg. Chem., 2015,54:8931-8936. doi: 10.1021/acs.inorgchem.5b00974

    17. [17]

      CHEN Z, WANG R J. Crystal Structures and Semiconductor Properties of Alkline Metal Selenides MHgSbSe3(M=K, Rb, Cs)[J]. Acta Chim. Sinica, 2000,58:326-331.  

    18. [18]

      Mafuku M, Nakai I, Nagashima K. The Crystal-Structure of a New Synthetic Sulfosalt, KHgSbS3[J]. Mater. Res. Bull., 1986,21:493-501. doi: 10.1016/0025-5408(86)90016-4

    19. [19]

      Li J, Chen Z, Wang X X, Proserpio D M, Proserpio D M. A Novel Two-Dimensional Mercury Antimony Telluride: Low Temperature Synthesis and Characterization of RbHgSbTe3[J]. J. Alloys Compd., 1997,262:28-33.

    20. [20]

      Zhang X, Yi N, Hoffmann R, Zheng C, Lin J H, Huang F Q. Semiconductive K2MSbS3(SH) (M=Zn, Cd) Featuring One-Dimensional[M2Sb2S6(SH2)]4- Chains[J]. Inorg. Chem., 2016,55:9742-9747. doi: 10.1021/acs.inorgchem.6b01529

    21. [21]

      Yohannan J P, Vidyasagar K. Syntheses and Characterization of One-Dimensional Alkali Metal Antimony (Ⅲ) Thiostannates (Ⅳ), A2Sb2Sn3S10(A=K, Rb, Cs)[J]. J. Solid State Chem., 2015,221:426-432. doi: 10.1016/j.jssc.2014.10.022

    22. [22]

      Yin W L, Zhou M L, Abishek K I, Yao J Y, Mar A. Noncentrosymmetric Quaternary Selenide Ba23Ga8Sb2Se38: Synthesis, Structure, and Optical Properties[J]. J. Alloys Compd., 2017,729:150-155. doi: 10.1016/j.jallcom.2017.09.127

    23. [23]

      Hanko J A, Kanatzidis M G. A Three-Dimensional Framework with Accessible Nanopores: RbCuSb2Se4·H2O[J]. Angew. Chem. Int. Ed., 1998,37(3):342-344. doi: 10.1002/(SICI)1521-3773(19980216)37:3<342::AID-ANIE342>3.0.CO;2-P

    24. [24]

      Wendlandt W W, Hecht H G. Reflectance Spectroscopy. New York: Interscience Publishers, 1966.

    25. [25]

      Dolomanov O V, Bourhis L J, Gildea R J. OLEX2:A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    26. [26]

      Zhou J, An L T. A Novel 3-D Thioindate-Thioantimonate Based on the Linkages of Large Heterometallic {In2Sb2S9} Clusters and 1-D[In2Sb2S84-]n Chains[J]. CrystEngComm, 2011,13:5924-5928. doi: 10.1039/c1ce05551h

    27. [27]

      Chou J H, Kanatzidis M G. Hydrothermal Synthesis and Characterization of (Me4N)[HgAsSe3], (Et4N)[HgAsSe3], and (Ph4P)2[Hg2As4Se11]: Novel 1-D Mercury Selenoarsenates[J]. J. Solid State Chem., 1996,123:115-122. doi: 10.1006/jssc.1996.0159

    28. [28]

      Gregory A M, Jason A H, Kanatzidis M G. New Quaternary Thiostannates and Thiogermanates A2Hg3M2S8(A=Cs, Rb; M=Sn, Ge) through Molten A2Sx. Reversible Glass Formation in Cs2Hg3M2S8[J]. Chem. Mater., 1998,10:1191-1199. doi: 10.1021/cm970804m

    29. [29]

      Du C X, Qi F Y, Chen Q, Baiyin M H. Two Mercury Antimony Chalcogenides Cs2HgSb4S8 and Cs2Hg2Sb2Se6 with Cesium Cations as Counterions[J]. ACS Omega, 2018,3(11):15168-15173. doi: 10.1021/acsomega.8b02059

    30. [30]

      An D C, Chen S P, Lu Z X, Li R, Chen W, Fan W H, Wang W X, Wu Y C. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb2Se3: Synergistic Effect of Doping and Defect Engineering[J]. ACS. Appl. Mater. Interfaces, 2019,1127788. doi: 10.1021/acsami.9b07313

    31. [31]

      Manocha A S, Fateley W G, Shimanouchi T. Far-Infrared Spectra and Barrier to Internal Rotation of Ethanethiol[J]. J. Phys. Chem., 1973,77:1977-1981. doi: 10.1021/j100635a011

    32. [32]

      Qian W, Krimm S. Conformation Dependence of the SH and CS Stretch Frequencies of the Cysteine Residue[J]. Biopolymers, 1992,32:1503-1518. doi: 10.1002/bip.360321109

    33. [33]

      BAIYIN M H, JI M, LIU X, AN Y L, JIA C Y, NING G L. Solvothermal Synthesis and Characterization of K4Ag2Sn3S9·2H2O with Layer Structure[J]. Chem. J. Chinese Universities, 2004,25(8):1391-1394.  

    34. [34]

      Kong D N, Xie Z L, Feng M L, Ye D, Du K Z, Li J R, Huang X Y. From One-Dimensional Ribbon to Three-Dimensional Microporous Framework: The Syntheses, Crystal Structures, and Properties of a Series of Mercury Antimony Chalcogenides[J]. Cryst. Growth Des., 2010,10(3):1364-1372. doi: 10.1021/cg9013834

    35. [35]

      Li Y Y, Liu P F, Lin H, Wu L M, Wu X T, Zhu Q L. Quaternary Semiconductor Ba8Zn4Ga2S15 Featuring Unique One-dimensional Chains and Exhibiting Desirable Yellow Emission[J]. Chem. Commun., 2019,55:7942-7945. doi: 10.1039/C9CC02575H

    36. [36]

      Lin H, Zhou L J, Chen L. Sulfides with Strong Nonlinear Optical Activity and Thermochromism: ACd4Ga5S12(A=K, Rb, Cs)[J]. Chem. Mater., 2012,24:3406-3414. doi: 10.1021/cm301550a

    37. [37]

      Li Y Y, Liu P F, Wu L M. Ba6Zn7Ga2S16: A Wide Band Gap Sulfide with Phase-Matchable Infrared NLO Properties[J]. Chem. Mater., 2017,29:5259-5266. doi: 10.1021/acs.chemmater.7b01321

    38. [38]

      Zhen N, Wu K, Wang Y, Li Q, Gao W H, Hou D W, Yang Z H, Jiang H D, Dong Y J, Pan S L. BaCdSnS4 and Ba3CdSn2S8: Syntheses, Structures, and Non-linear Optical and Photoluminescence Properties[J]. Dalton Trans., 2016,45:10681-10688. doi: 10.1039/C6DT01537A

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    16. [16]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    19. [19]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(3)
  • Abstract views(1381)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return