Citation: Jie YANG, Zhen-Hua LI, Wei FENG, Fu-You LI. Checking of Non-radiative Energy Transfer Process in Nanocrystal Self-Assembly Structure[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2158-2166. doi: 10.11862/CJIC.2021.252 shu

Checking of Non-radiative Energy Transfer Process in Nanocrystal Self-Assembly Structure

Figures(6)

  • Upconversion nanoparticles NaYF4: 20%Yb, 2%Er@NaYF4 (marked as UCNP) and gold nanoparticles (AuNP) were used as donors and acceptors to study non-radiative energy transfer in an assembly structure with a defined position relationship. Using UCNP and AuNP as basic building units, two-dimensional UCNP monolayer with large area and regular arrangement were self-assembled by solvent evaporation method at liquid-air interface. UCNP+AuNP bilayer and UCNP+NaYF4+AuNP trilayer structures were prepared by layer-by-layer assembly. Then the luminescent properties of self-assembled films were characterized by the spectral imager system which was designed by our group. The spectrum of three kinds of films were compared. It was found that the luminescence attenuation of UCNP+AuNP bilayer structure and UCNP+NaYF4+AuNP trilayer structure were similar, compared with UCNP monolayer. That is, there is no obvious non-radiative energy transfer between UCNP and AuNP in our research system. In the research, a well-geometric assembly model was provided, and the luminescence test equipment was set up, and it was verified that there was no non-radiative energy transfer between UCNP and AuNP in our self-assembly models.
  • 加载中
    1. [1]

      Zhong Y T, Ma Z R, Wang F F, Wang X, Yang Y J, Liu Y L, Zhao X, Li J C, Du H T, Zhang M X. In Vivo Molecular Imaging for Immunotherapy Using Ultra-Bright Near-Infrared-Ⅱb Rare-Earth Nanoparticles[J]. Nat. Biotechnol., 2019,37(11):1322-1331. doi: 10.1038/s41587-019-0262-4

    2. [2]

      Ge H, Wang D Y, Pan Y, Guo Y Y, Li H Y, Zhang F, Zhu X Y, Li Y H, Zhang C, Huang L. Sequence-Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies[J]. Angew. Chem. Int. Ed., 2020,59(21):8133-8137. doi: 10.1002/anie.202000831

    3. [3]

      Wu Y M, Xu J H, Poh E T, Liang L L, Liu H L, Yang J K, Qiu C W, Vallée R A, Liu X G. Upconversion Superburst with Sub-2μs Lifetime[J]. Nat. Nanotechnol., 2019,14(12):1110-1115. doi: 10.1038/s41565-019-0560-5

    4. [4]

      Li H, Tan M L, Wang X, Li F, Zhang Y Q, Zhao L L, Yang C H, Chen G Y. Temporal Multiplexed In Vivo Upconversion Imaging[J]. J. Am. Chem. Soc., 2020,142(4):2023-2030. doi: 10.1021/jacs.9b11641

    5. [5]

      WANG Z M, HU M, XING B G. Application of Near-Infrared Upconversion Nanotransducers in Optogenetic Regulation[J]. Chinese J. Inorg. Chem., 2020,36(6):969-982.  

    6. [6]

      Gu B, Zhang Q C. Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems[J]. Adv. Sci., 2018,5(3)1700609. doi: 10.1002/advs.201700609

    7. [7]

      Ovais M, Mukherjee S, Pramanik A, Das D, Mukherjee A, Raza A, Chen C. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment[J]. Adv. Mater., 2020,32(22)2000055. doi: 10.1002/adma.202000055

    8. [8]

      Fan Y B, Wang Y H, Zhang N, Sun W Z, Gao Y S, Qiu C W, Song Q H, Xiao S M. Resonance-Enhanced Three-Photon Luminesce via Lead Halide Perovskite Metasurfaces for Optical Encoding[J]. Nat. Commun., 2019,10(1):1-8. doi: 10.1038/s41467-018-07882-8

    9. [9]

      Liu X, Lai H H, Peng J J, Cheng D, Zhang X B, Yuan L. Chromophore-Modified Highly Selective Ratiometric Upconversion Nanoprobes for Detection of ONOO——Related Hepatotoxicity In Vivo[J]. Small, 2019,15(43)1902737. doi: 10.1002/smll.201902737

    10. [10]

      Guo H H, Song X R, Lei W, He C, You W W, Lin Q Z, Zhou S Y, Chen X Y, Chen Z. Direct Detection of Circulating Tumor Cells in Whole Blood Using Time-Resolved Luminescent Lanthanide Nanoprobes[J]. Angew. Chem., 2019,131(35):12323-12327. doi: 10.1002/ange.201907605

    11. [11]

      Yan S Q, Zeng X M, Tang Y A, Liu B F, Wang Y, Liu X G. Activating Antitumor Immunity and Antimetastatic Effect through Polydopa-mine-Encapsulated Core-Shell Upconversion Nanoparticles[J]. Adv. Mater., 2019,31(46)1905825. doi: 10.1002/adma.201905825

    12. [12]

      Melle S, Calderón O G, Laurenti M, Mendez-Gonzalez D, Egatz-Gómez A, López-Cabarcos E, Cabrera-Granado E, Díaz E, Rubio-Retama J. Forster Resonance Energy Transfer Distance Dependence from Upconverting Nanoparticles to Quantum Dots[J]. J. Phys. Chem. C, 2018,122(32):18751-18758. doi: 10.1021/acs.jpcc.8b04908

    13. [13]

      Bednarkiewicz A, Nyk M, Samoc M, Strek W. Up-Conversion FRET from Er3+/Yb3+: NaYF4 Nanophosphor to CdSe Quantum Dots[J]. J. Phys. Chem. C, 2010,114(41):17535-17541. doi: 10.1021/jp106120d

    14. [14]

      Zhou J, Li C Y, Li D H, Liu X F, Mu Z, Gao W B, Qiu J R, Deng R R. Single-Molecule Photoreaction Quantitation through Intraparticle-Surface Energy Transfer (i-SET) Spectroscopy[J]. Nat. Commun., 2020,11(1):1-8. doi: 10.1038/s41467-019-13993-7

    15. [15]

      Zheng T, Sun L D, Zhou J C, Feng W, Zhang C, Yan C H. Construction of NaREF4-Based Binary and Bilayer Nanocrystal Assemblies[J]. Chem. Commun., 2013,49(51):5799-5801. doi: 10.1039/c3cc39108f

    16. [16]

      Deng K R, Xu L L, Guo X, Wu X T, Liu Y L, Zhu Z M, Li Q, Zhan Q Q, Li C X, Quan Z W. Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence[J]. Small, 2020,16(38)2002066. doi: 10.1002/smll.202002066

    17. [17]

      Boles M A, Engel M, Talapin D V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials[J]. Chem. Rev., 2016,116(18):11220-11289. doi: 10.1021/acs.chemrev.6b00196

    18. [18]

      Coropceanu I, Boles M A, Talapin D V. Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection[J]. J. Am. Chem. Soc., 2019,141(14):5728-5740. doi: 10.1021/jacs.8b12539

    19. [19]

      Boles M A, Talapin D V. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice[J]. ACS Nano, 2019,13(5):5375-5384. doi: 10.1021/acsnano.9b00006

    20. [20]

      Liu Y, Siron M, Lu D, Yang J J, Dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q. Self-Assembly of Two-Dimensional Perovskite Nanosheet Building Blocks into Ordered Ruddlesden-Popper Perovskite Phase[J]. J. Am. Chem. Soc., 2019,141(33):13028-13032. doi: 10.1021/jacs.9b06889

    21. [21]

      Yang Y, Lee J T, Liyanage T, Sardar R. Flexible Polymer-Assisted Mesoscale Self-Assembly of Colloidal CsPbBr3 Perovskite Nanocrystals into Higher Order Superstructures with Strong Inter-Nanocrystal Electronic Coupling[J]. J. Am. Chem. Soc., 2019,141(4):1526-1536. doi: 10.1021/jacs.8b10083

    22. [22]

      Yang Y C, Wang B W, Shen X D, Yao L Y, Wang L, Chen X, Xie S H, Li T T, Hu J H, Yang D. Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties[J]. J.Am.Chem.Soc., 2018,140(44):15038-15047. doi: 10.1021/jacs.8b09779

    23. [23]

      HUANG X, JING Q, LU Z D, REN X M. Ligand-Assisted Aggregation Self-Assembly of CH3NH3PbBr3 Nanoplatelets[J]. Chinese J. Inorg. Chem., 2018,34(8):1489-1493.  

    24. [24]

      Zhou H P, Xu C H, Sun W, Yan C H. Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications[J]. Adv. Funct. Mater., 2009,19(24):3892-3900. doi: 10.1002/adfm.200901458

    25. [25]

      Dong A G, Chen J, Vora P M, Kikkawa J M, Murray C B. Binary Nanocrystal Superlattice Membranes Self-Assembled at the Liquid-Air Interface[J]. Nature, 2010,466(7305):474-477. doi: 10.1038/nature09188

    26. [26]

      Bednarkiewicz A, Strek W. Laser-Induced Hot Emission in Nd3+/Yb3+: YAG Nanocrystallite Ceramics[J]. J. Phys. D: Appl. Phy., 2002,35(20)2503. doi: 10.1088/0022-3727/35/20/307

    27. [27]

      Lakowicz J R. Principles of Fluorescence Spectroscopy. New York: Springer Science & Business Media, 2013.

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    14. [14]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    18. [18]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(3)
  • Abstract views(1293)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return