Citation: Wu-Jiu JIANG, Ao-Dian LI, Ming-Hao TANG, Xiao-Long NAN, Yan-Liang TAN, Yu-Xing TAN. Solvothermal Self-Assembly Syntheses, Crystal Structures and Property of Two Uranyl Complexes with Organic Ligand Containing N and O Atoms[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2209-2218. doi: 10.11862/CJIC.2021.251 shu

Solvothermal Self-Assembly Syntheses, Crystal Structures and Property of Two Uranyl Complexes with Organic Ligand Containing N and O Atoms

  • Corresponding author: Yu-Xing TAN, tanyuxing@hynu.edu.cn
  • Received Date: 22 June 2021
    Revised Date: 2 September 2021

Figures(14)

  • Under solvothermal conditions, two new UO22+ complexes[UO2(L1)(CH3COO)]·3CH3OH (C1) and[UO2 (L2)(Phen)(CH3O)] (C2) were synthesized by self-assembly with organic ligand containing N and O atom (L1=N', N‴-((2E, 3E)-butane-2, 3-diylidene)bis(4-hydroxybenzohydrazide), L2=2, 4, 5-trifluoro-3-methoxybenzoic acid, Phen=phenanthroline). The structure of the complexes was characterized by elemental analysis, infrared spectra and X-ray single crystal diffraction. The results show that the uranium ions in complexes C1 and C2 are all +6 valence. The uranium ions in complexes C1 and C2 adopt eight- and seven-coordinated modes, respectively. C1 forms a one-dimensional infinite chain structure through abundant O-H…O hydrogen bonds, and there are π-π stacking interactions in C2. The thermal stability and spectral properties of the complexes were studied, and the structures of the complexes were calculated theoretically. The dynamic stability of the complexes was discussed. CCDC: 2077418, C1; 2077419, C2.
  • 加载中
    1. [1]

      WANG X Y, LIU Y F. Nuclear Chemistry and Radiochemistry. Beijing: Peking University Press, 2007.

    2. [2]

      Settle F A. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle[J]. J. Chem. Educ., 2009,86(3):316-323. doi: 10.1021/ed086p316

    3. [3]

      Alley W M, Alley R. The Growing Problem of Stranded Used Nuclear Fuel[J]. Environ. Sci. Technol., 2014,48(4):2091-2096. doi: 10.1021/es405114h

    4. [4]

      Basolo F. Frontiers of Inorganic Chemistry[J]. Coord. Chem. Rev., 1993,125(1):13-34.  

    5. [5]

      Brinkmann H, Patzschke M, Kaden P, Raiwa M, Rossberg A, Kloditz R, Heim K, Moll H, Stumpf T. Complex Formation Between UO22+ and α-Isosaccharinic Acid: Insights on a Molecular Level[J]. Dalton Trans., 2019,48(35):13440-13457. doi: 10.1039/C9DT01080G

    6. [6]

      Liu G K, Rao L F, Tian G X. Theoretical Analysis and Quantification of the Absorption Spectra of Uranyl Complexes with Structurally-Related Tridentate Ligands[J]. Phys. Chem. Chem. Phys., 2013,15(40):17487-17495. doi: 10.1039/c3cp52900b

    7. [7]

      Niklas J E, Farnum B H, Gorden J D, Gorden A E V. Structural Characterization and Redox Activity of a Uranyl Dimer and Transition-Metal Complexes of a Tetradentate BIAN Ligand[J]. Organometallics, 2017,36(23):4626-4634. doi: 10.1021/acs.organomet.7b00454

    8. [8]

      Drouza C, Gramlich V, Sigalas M P, Pashalidis I, Keramidas A D. Synthesis, Structure, and Solution Dynamics of UO22+-Hydroxy Ketone Compounds[UO2(ma)2(H2O)] and[UO2(dpp) (Hdpp)2(H2O)] ClO4[ma=3-Hydroxy-2-methyl-4-pyrone, Hdpp=3-Hydroxy-1, 2-dimethyl-4(1H)-pyridone][J]. Inorg. Chem., 2004,43(26):8336-8345. doi: 10.1021/ic049167+

    9. [9]

      Natrajan L, Burdet F, Pécaut J, Mazzanti M. Synthesis and Structure of a Stable Pentavalent-Uranyl Coordination Polymer[J]. J. Am. Chem. Soc., 2006,128(22):7152-7153. doi: 10.1021/ja0609809

    10. [10]

      Jiang W J, Fan S J, Zhou Q, Zhang F X, Kuang D Z, Tan Y X. Diversity of Complexes Based on p-Nitrobenzoylhydrazide, Benzoylformic Acid and Diorganotin Halides or Oxides Self-Assemble: Cytotoxicity, the Induction of Apoptosis in Cancer Cells and DNA-Binding Properties[J]. Bioorg. Chem., 2020,94103402. doi: 10.1016/j.bioorg.2019.103402

    11. [11]

      Li L J, Miao L, Zhang Z, Pu X H, Feng Q, Yanagisawa K, Fan Y, Fan M J, Wen P H, Hu D W. Recent Progress in Piezoelectric Thin Film Fabrication via the Solvothermal Process[J]. J. Mater. Chem. A, 2019,7(27):16046-16067. doi: 10.1039/C9TA04863D

    12. [12]

      Modeshia D R, Walton R I. Solvothermal Synthesis of Perovskites and Pyrochlores: Crystallisation of Functional Oxides under Mild Conditions[J]. Chem. Soc. Rev., 2010,39(11):4303-4325. doi: 10.1039/b904702f

    13. [13]

      Sanna Angotzi M, Musinu A, Mameli V, Ardu A, Cara C, Niznansky D, Xin H L, Cannas C. Spinel Ferrite Core-Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces[J]. ACS Nano, 2017,11(8):7889-7900. doi: 10.1021/acsnano.7b02349

    14. [14]

      McSkimming A, Su J, Cheisson T, Gau M R, Carroll P J, Batista E R, Yang P, Schelter E J. Coordination Chemistry of a Strongly-Donating Hydroxylamine with Early Actinides: An Investigation of Redox Properties and Electronic Structure[J]. Inorg. Chem., 2018,57(8):4387-4394. doi: 10.1021/acs.inorgchem.7b03238

    15. [15]

      Yao J, Zheng X J, Pan Q J, Schreckenbach G. Highly Valence-Diversified Binuclear Uranium Complexes of a Schiff-Base Polypyrrolic Macrocycle: Prediction of Unusual Structures, Electronic Properties, and Formation Reactions[J]. Inorg. Chem., 2015,54(11):5438-5449. doi: 10.1021/acs.inorgchem.5b00483

    16. [16]

      Castro-Rodríguez I, Meyer K. Small Molecule Activation at Uranium Coordination Complexes: Control of Reactivity via Molecular Architecture[J]. Chem. Commun., 2006(13):1353-1368. doi: 10.1039/b513755c

    17. [17]

      Melfi P J, Kim S K, Lee J T, Bolze F, Seidel D, Lynch V M, Veauthier J M, Gaunt A J, Neu M P, Ou Z, Kadish K M, Fukuzumi S, Ohkubo K, Sessler J L. Redox Behavior of Cyclo[6]pyrrole in the Formation of a Uranyl Complex[J]. Inorg. Chem., 2007,46(13):5143-5145. doi: 10.1021/ic700781t

    18. [18]

      Azam M, Al-Resayes S I, Velmurugan G, Venuvanalingam P, Wagler J, Kroke E. Novel Uranyl(Ⅵ) Complexes Incorporating Propylene-Bridged Salen-Type N2O2-Ligands: A Structural and Computational Approach[J]. Dalton Trans., 2015,44(2):568-577. doi: 10.1039/C4DT02112F

    19. [19]

      Li J X, Du Z X. A Binuclear Cadmium (Ⅱ) Cluster Based on π …π Stacking and Halogen…Halogen Interactions: Synthesis, Crystal Analysis and Fluorescent Properties[J]. J. Clust. Sci., 2020,31(2):507-511. doi: 10.1007/s10876-019-01666-w

    20. [20]

      Cheng B H. Improving Oxygen Sensing Performance via Inner-Molecular π-π Stacking in a Series of Phosphorescent Cu (Ⅰ) Complexes[J]. Spectrochim. Acta Part A, 2020,239118537. doi: 10.1016/j.saa.2020.118537

    21. [21]

      GE R, WU S, ZENG L W, LI F Z, MEI L, LIU C L. Synthesis, Structure and Physico-chemical Properties of Two Uranyl Complexes of Cucurbiturils Mediated by Sulfate Ions[J]. Sci. Sin. Chim, 2019,49(8):1073-1082.

    22. [22]

      WANG C. Synthesis, Structural Analysis and Adsorption Properties of the Uranyl Complex[J]. Chemical Reagents, 2019,41(5):431-436.

    23. [23]

      GUO G, LI J, WU Y, DING W M, ZHANG S Z, SUN Y X. Self-Assembled Zn2+, Co2+ and Ni2+ Complexes Based on Coumarin Schiff Base Ligands: Synthesis, Crystal Structure and Spectral Properties[J]. Chinese J. Inorg. Chem., 2021,37(6):1113-1124.  

    24. [24]

      SONG G, SUN Q, HOU Y N, ZHAN R, WEI D M, SHI Z, XING Y H. Synthesis, Structure and Quantum Chemistry Study of the 4-Iodopyrazole Copper Complexes[J]. Chinese J. Inorg. Chem., 2013,29(10):2150-2156.  

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(3)
  • Abstract views(1205)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return