Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties
- Corresponding author: Zhi-Guo GU, zhiguogu@jiangnan.edu.cn
Citation:
Ya-Xiang SHI, Wen-Da ZHANG, Xin FANG, Xiao-Dong YAN, Zhi-Guo GU. Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties[J]. Chinese Journal of Inorganic Chemistry,
;2021, 37(12): 2193-2202.
doi:
10.11862/CJIC.2021.249
Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction[J]. ACS Catal., 2017,8(1):651-655.
Cui X, Lei S, Wang A C, Gao L K, Zhang Q, Yang Y K, Lin Z Q. Emerging Covalent Organic Frameworks Tailored Materials for Electrocatalysis[J]. Nano Energy, 2020,70:2211-2855.
Zhao J, Zhang J J, Li Z Y, Bu X H. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction[J]. Small, 2020,16(51)e2003916. doi: 10.1002/smll.202003916
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives[J]. Chem. Soc. Rev., 2017,46(2):337-365. doi: 10.1039/C6CS00328A
Oscar D M, Isis L Y, Koper T M, Federico C V. Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction[J]. ACS Catal., 2015,5(9):5380-5387. doi: 10.1021/acscatal.5b01638
Wu Z P, Lu X F, Zang S Q, Lou X W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction[J]. Adv. Funct. Mater., 2020,30(15)1910274. doi: 10.1002/adfm.201910274
Slater A G, Cooper A I. Function-Led Design of New Porous Materials[J]. Science, 2015,348(6238)aaa8075. doi: 10.1126/science.aaa8075
Das S, Heasman P, Ben T, Qiu S L. Porous Organic Materials: Strategic Design and Structure-Function Correlation[J]. Chem. Rev., 2017,117(3):1515-1563. doi: 10.1021/acs.chemrev.6b00439
Jin H Y, Guo C X, Liu X, Liu J L, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chem. Rev., 2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689
Li Z E, He T, Gong Y F, Jiang D L. Covalent Organic Frameworks: Pore Design and Interface Engineering[J]. Acc. Chem. Res., 2020,53(8):1672-1685. doi: 10.1021/acs.accounts.0c00386
Xu Y H, Jin S B, Xu H, Atsushi N, Jiang D L. Conjugated Microporous Polymers: Design, Synthesis and Application[J]. Chem. Soc. Rev., 2013,42(20):8012-8031. doi: 10.1039/c3cs60160a
Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Metal-Covalent Organic Frameworks (MCOFs): A Bridge between Metal-Organic Frameworks and Covalent Organic Frameworks[J]. Angew. Chem. Int. Ed., 2020,59(33):13722-13733. doi: 10.1002/anie.202004796
Bhat S A, Das C, Maji T K. Metallated Azo-Naphthalene Diimide Based Redox Active Porous Organic Polymer as an Efficient Water Oxidation Electrocatalyst[J]. J.Mater.Chem.A, 2018,6(40):19834-19842. doi: 10.1039/C8TA06588H
Jia H K, Yao Y C, Gao Y Y, Lu D P, Du P W. Pyrolyzed Cobalt Porphyrin-Based Conjugated Mesoporous Polymers as Bifunctional Catalysts for Hydrogen Production and Oxygen Evolution in Water[J]. Chem. Commun., 2016,52(92):13483-13486. doi: 10.1039/C6CC06972J
Guan X Y, Chen F Q, Fang Q R, Qiu S L. Design and Applications of Three Dimensional Covalent Organic Frameworks[J]. Chem. Soc. Rev., 2020,49(5):1357-1384. doi: 10.1039/C9CS00911F
Dolganov A V, Belov A S, Novikov V V, Vologzhanina A V, Mokhir A, Bubnov Y N, Voloshin Y Z. Iron vs. Cobalt Clathrochelate Electrocatalysts of HER: The First Example on a Cage Iron Complex[J]. Dalton. Trans., 2013,42(13):4373-4376.
Dolganov A V, Tarasova O V, Ivleva A Y, Chernyarva O Y, Grigoryan K A, Ganz V S. Iron(Ⅱ) Clathrochelates as Electrocatalysts of Hydrogen Evolution Reaction at Low pH[J]. Int. J. Hydrog. Energy, 2017,42(44):27084-27093. doi: 10.1016/j.ijhydene.2017.09.080
Cheikh J A, Villagra A, Ranjbari A, Pradon A, Antuch M, Dragoe D, Millet P, Assaud L. Engineering a Cobalt Clathrochelate/Glassy Carbon Interface for the Hydrogen Evolution Reaction[J]. Appl. Catal. B, 2019,250:292-300. doi: 10.1016/j.apcatb.2019.03.036
Bila J L, Marmier M, Zhurov K O, Scopelliti R, Zivkovic I, Ronnow H M, Shaik N E, Sienkiewicz A, Fink C, Severin K. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.
Sumit K, Thomas W, Eckhard B, Phalguni C. Deliberate Synthesis for Magnetostructural Study of Linear Tetranuclear Complexes BⅢMnⅡMnⅡBⅢ, MnⅢMnⅡMnⅡMnⅢ, MnⅣMnⅡMnⅡMnⅣ, FeⅢMnⅡMnⅡFeⅢ, and CrⅢMnⅡMnⅡCrⅢ Influence of Terminal Ions on the Exchange Coupling[J]. Inorg. Chem., 2006,45:5911-5923. doi: 10.1021/ic060409a
SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.
Sheldrick G M. Bruker Analytical X-ray Systems, Madison, WI, 1996.
(a) Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, Universität of Göttingen, Göttingen, Germany, 1997.
(b)Sheldrick G M. A Short History of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64(1): 112-122
Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[J]. J. Am. Chem. Soc., 2015,137(26):8352-8355. doi: 10.1021/jacs.5b04147
Ma Y X, Li Z J, Wei L, Ding Y B, Wang W. A Dynamic Three-Dimensional Covalent Organic Framework[J]. J. Am. Chem. Soc., 2017,139(14):4995-4998. doi: 10.1021/jacs.7b01097
Wu C Y, Liu Y M, Liu H, Duan C H, Pan Q Y, Zhu J, Hu F, Ma X Y, Jiu T G, Li Z B, Zhao Y J. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement[J]. J. Am. Chem. Soc., 2018,140(3):10016-10024.
Bila, Marmier, Zhurov, Scopelliti, Zickovic, Ronnow, Shalk, Sienkiewicz, Cornel, Severin. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.
Capon J F, Gloaguen F, Schollhammer P, Talarmin J. Catalysis of the Electrochemical H 2 Evolution by Di-iron Sub-site Models[J]. Coord. Chem. Rev., 2005,249(15/16):1664-1676.
Lu H, Wang C, Chen J J, Ge R, Leng W G, Dong B, Huang J, Gao Y N. A Novel 3D Covalent Organic Framework Membrane Grown on a Porous α-Al2O3 Substrate under Solvothermal Conditions[J]. Chem. Commun., 2015,51(85):15562-15565. doi: 10.1039/C5CC06742A
Alameddine B, Shetty S, Baig N, Saleh A M, Fakhreia A S. Synthesis and Characterization of Metalorganic Polymers of Intrinsic Microporosity Based on Iron(Ⅱ) Clathrochelate[J]. Polymer, 2017,122:200-207. doi: 10.1016/j.polymer.2017.06.048
Long X, Li J K, Xiao S, Yan K Y, Wang Z L, Chen H N, Yang S H. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2014,53(29):7584-7588. doi: 10.1002/anie.201402822
Babar P T, Pawar B S, Lokhande A C, Gang M G, Jang J S, Suryawanshi M P, Pawar S M, Kim J H. Annealing Temperature Dependent Catalytic Water Oxidation Activity of Iron Oxyhydroxide Thin Films[J]. J. Energy Chem., 2017,26(4):757-761. doi: 10.1016/j.jechem.2017.04.012
Lee J Y, Lee H Y, Lim B K. Chemical Transformation of Iron Alkoxide Nanosheets to FeOOH Nanoparticles for Highly Active and Stable Oxygen Evolution Electrocatalysts[J]. J. Ind. Eng. Chem., 2018,58:100-104. doi: 10.1016/j.jiec.2017.09.013
Yu L, Yang J F, Guan B Y, Lu Y, Lou W D. Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution[J]. Angew. Chem. Int. Ed., 2018,57(1):172-176. doi: 10.1002/anie.201710877
Gu M L, Wang S C, Chen C, Xiong D K, Yi F Y. Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions[J]. Inorg. Chem., 2020,59(9):6078-6086. doi: 10.1021/acs.inorgchem.0c00100
Gan L, Fang J, Wang M R, Hu L T, Zhang K, Lai Y Q, Li J. Preparation of Double-Shell Co9S8/Fe3O4 Embedded in S/N Co-decorated Hollow Carbon nanoellipsoid Derived from Bi-metal Organic Frameworks for Oxygen Evolution Reaction[J]. J. Power Sources, 2018,391:59-66. doi: 10.1016/j.jpowsour.2018.04.082
Dutta S, Indra A, Feng Y, Song T, Paik U. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33766-33774. doi: 10.1021/acsami.7b07984
Zhang W D, Hu Q T, Wang L L, Gao J, Zhu H Y, Yan X D, Gu Z G. In-Situ Generated Ni-MOF/LDH Heterostructures with Abundant Phase Interfaces for Enhanced Oxygen Evolution Reaction[J]. Appl. Catal. B, 2021,286119906. doi: 10.1016/j.apcatb.2021.119906
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
TBPM, blue; H3DFMP, red; Fe, yellow
C: gray; B: dark yellow; O: red; N: blue; Fe: yellow
C: gray; B: dark yellow; O: red; N: blue; Fe: yellow
Inset in (c): corresponding enlarged spectrum of NF