Citation: Ya-Xiang SHI, Wen-Da ZHANG, Xin FANG, Xiao-Dong YAN, Zhi-Guo GU. Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2193-2202. doi: 10.11862/CJIC.2021.249 shu

Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties

  • Corresponding author: Zhi-Guo GU, zhiguogu@jiangnan.edu.cn
  • Received Date: 18 June 2021
    Revised Date: 27 September 2021

Figures(8)

  • A three-dimensional metal-containing porous organic polymer (Fe2-POP) was synthesized using ferrous chloride, 2, 6-diformyl-4-methylphenol dioxime (H3DFMP) and tetra(4-(dihydroxy)borylphenyl)methane (TBPM) through one-step coordination and boric acid esterification dehydration polymerization reaction. Binuclear iron as the linear unit was formed by coordination between iron ion and H3DFMP, while TBPM was used as the tetrahedral linking unit, so that the three-dimensional porous organic polymer Fe2-POP with dia topology was produced. X-ray single crystal diffraction analysis of the model compound (MC-1) verified the structural characteristics of the dinuclear ferrous unit. Infrared spectroscopy and solid-state nuclear magnetism characterizations proved the formation of C=N and B-O in Fe2-POP. Fe2-POP had a high specific surface area of 510 m2·g-1 and uniform pore size (0.6-0.8 nm). X-ray photoelectron spectroscopy indicated the presence of divalent iron in Fe2-POP. Scanning electron microscopy and transmission electron microscopy showed that Fe2-POP was composed of 50-100 nm sphere-shaped particles. Electrochemical tests showed that Fe2-POP exhibited excellent electrochemical properties towards oxygen evolution reaction, and it only needed a small overpotential of 258 mV to deliver a current density of 10 mA·cm-2, and the Tafel slope was 71.0 mV·dec-1.
  • 加载中
    1. [1]

      Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction[J]. ACS Catal., 2017,8(1):651-655.  

    2. [2]

      Cui X, Lei S, Wang A C, Gao L K, Zhang Q, Yang Y K, Lin Z Q. Emerging Covalent Organic Frameworks Tailored Materials for Electrocatalysis[J]. Nano Energy, 2020,70:2211-2855.  

    3. [3]

      Zhao J, Zhang J J, Li Z Y, Bu X H. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction[J]. Small, 2020,16(51)e2003916. doi: 10.1002/smll.202003916

    4. [4]

      Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives[J]. Chem. Soc. Rev., 2017,46(2):337-365. doi: 10.1039/C6CS00328A

    5. [5]

      Oscar D M, Isis L Y, Koper T M, Federico C V. Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction[J]. ACS Catal., 2015,5(9):5380-5387. doi: 10.1021/acscatal.5b01638

    6. [6]

      Wu Z P, Lu X F, Zang S Q, Lou X W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction[J]. Adv. Funct. Mater., 2020,30(15)1910274. doi: 10.1002/adfm.201910274

    7. [7]

      Slater A G, Cooper A I. Function-Led Design of New Porous Materials[J]. Science, 2015,348(6238)aaa8075. doi: 10.1126/science.aaa8075

    8. [8]

      Das S, Heasman P, Ben T, Qiu S L. Porous Organic Materials: Strategic Design and Structure-Function Correlation[J]. Chem. Rev., 2017,117(3):1515-1563. doi: 10.1021/acs.chemrev.6b00439

    9. [9]

      Jin H Y, Guo C X, Liu X, Liu J L, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chem. Rev., 2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689

    10. [10]

      Li Z E, He T, Gong Y F, Jiang D L. Covalent Organic Frameworks: Pore Design and Interface Engineering[J]. Acc. Chem. Res., 2020,53(8):1672-1685. doi: 10.1021/acs.accounts.0c00386

    11. [11]

      Xu Y H, Jin S B, Xu H, Atsushi N, Jiang D L. Conjugated Microporous Polymers: Design, Synthesis and Application[J]. Chem. Soc. Rev., 2013,42(20):8012-8031. doi: 10.1039/c3cs60160a

    12. [12]

      Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Metal-Covalent Organic Frameworks (MCOFs): A Bridge between Metal-Organic Frameworks and Covalent Organic Frameworks[J]. Angew. Chem. Int. Ed., 2020,59(33):13722-13733. doi: 10.1002/anie.202004796

    13. [13]

      Bhat S A, Das C, Maji T K. Metallated Azo-Naphthalene Diimide Based Redox Active Porous Organic Polymer as an Efficient Water Oxidation Electrocatalyst[J]. J.Mater.Chem.A, 2018,6(40):19834-19842. doi: 10.1039/C8TA06588H

    14. [14]

      Jia H K, Yao Y C, Gao Y Y, Lu D P, Du P W. Pyrolyzed Cobalt Porphyrin-Based Conjugated Mesoporous Polymers as Bifunctional Catalysts for Hydrogen Production and Oxygen Evolution in Water[J]. Chem. Commun., 2016,52(92):13483-13486. doi: 10.1039/C6CC06972J

    15. [15]

      Guan X Y, Chen F Q, Fang Q R, Qiu S L. Design and Applications of Three Dimensional Covalent Organic Frameworks[J]. Chem. Soc. Rev., 2020,49(5):1357-1384. doi: 10.1039/C9CS00911F

    16. [16]

      Dolganov A V, Belov A S, Novikov V V, Vologzhanina A V, Mokhir A, Bubnov Y N, Voloshin Y Z. Iron vs. Cobalt Clathrochelate Electrocatalysts of HER: The First Example on a Cage Iron Complex[J]. Dalton. Trans., 2013,42(13):4373-4376.  

    17. [17]

      Dolganov A V, Tarasova O V, Ivleva A Y, Chernyarva O Y, Grigoryan K A, Ganz V S. Iron(Ⅱ) Clathrochelates as Electrocatalysts of Hydrogen Evolution Reaction at Low pH[J]. Int. J. Hydrog. Energy, 2017,42(44):27084-27093. doi: 10.1016/j.ijhydene.2017.09.080

    18. [18]

      Cheikh J A, Villagra A, Ranjbari A, Pradon A, Antuch M, Dragoe D, Millet P, Assaud L. Engineering a Cobalt Clathrochelate/Glassy Carbon Interface for the Hydrogen Evolution Reaction[J]. Appl. Catal. B, 2019,250:292-300. doi: 10.1016/j.apcatb.2019.03.036

    19. [19]

      Bila J L, Marmier M, Zhurov K O, Scopelliti R, Zivkovic I, Ronnow H M, Shaik N E, Sienkiewicz A, Fink C, Severin K. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.  

    20. [20]

      Sumit K, Thomas W, Eckhard B, Phalguni C. Deliberate Synthesis for Magnetostructural Study of Linear Tetranuclear Complexes BMnMnB, MnMnMnMn, MnMnMnMn, FeMnMnFe, and CrMnMnCr Influence of Terminal Ions on the Exchange Coupling[J]. Inorg. Chem., 2006,45:5911-5923. doi: 10.1021/ic060409a

    21. [21]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    22. [22]

      Sheldrick G M. Bruker Analytical X-ray Systems, Madison, WI, 1996.

    23. [23]

      (a) Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, Universität of Göttingen, Göttingen, Germany, 1997.
      (b)Sheldrick G M. A Short History of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64(1): 112-122

    24. [24]

      Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[J]. J. Am. Chem. Soc., 2015,137(26):8352-8355. doi: 10.1021/jacs.5b04147

    25. [25]

      Ma Y X, Li Z J, Wei L, Ding Y B, Wang W. A Dynamic Three-Dimensional Covalent Organic Framework[J]. J. Am. Chem. Soc., 2017,139(14):4995-4998. doi: 10.1021/jacs.7b01097

    26. [26]

      Wu C Y, Liu Y M, Liu H, Duan C H, Pan Q Y, Zhu J, Hu F, Ma X Y, Jiu T G, Li Z B, Zhao Y J. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement[J]. J. Am. Chem. Soc., 2018,140(3):10016-10024.  

    27. [27]

      Bila, Marmier, Zhurov, Scopelliti, Zickovic, Ronnow, Shalk, Sienkiewicz, Cornel, Severin. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.  

    28. [28]

      Capon J F, Gloaguen F, Schollhammer P, Talarmin J. Catalysis of the Electrochemical H 2 Evolution by Di-iron Sub-site Models[J]. Coord. Chem. Rev., 2005,249(15/16):1664-1676.  

    29. [29]

      Lu H, Wang C, Chen J J, Ge R, Leng W G, Dong B, Huang J, Gao Y N. A Novel 3D Covalent Organic Framework Membrane Grown on a Porous α-Al2O3 Substrate under Solvothermal Conditions[J]. Chem. Commun., 2015,51(85):15562-15565. doi: 10.1039/C5CC06742A

    30. [30]

      Alameddine B, Shetty S, Baig N, Saleh A M, Fakhreia A S. Synthesis and Characterization of Metalorganic Polymers of Intrinsic Microporosity Based on Iron(Ⅱ) Clathrochelate[J]. Polymer, 2017,122:200-207. doi: 10.1016/j.polymer.2017.06.048

    31. [31]

      Long X, Li J K, Xiao S, Yan K Y, Wang Z L, Chen H N, Yang S H. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2014,53(29):7584-7588. doi: 10.1002/anie.201402822

    32. [32]

      Babar P T, Pawar B S, Lokhande A C, Gang M G, Jang J S, Suryawanshi M P, Pawar S M, Kim J H. Annealing Temperature Dependent Catalytic Water Oxidation Activity of Iron Oxyhydroxide Thin Films[J]. J. Energy Chem., 2017,26(4):757-761. doi: 10.1016/j.jechem.2017.04.012

    33. [33]

      Lee J Y, Lee H Y, Lim B K. Chemical Transformation of Iron Alkoxide Nanosheets to FeOOH Nanoparticles for Highly Active and Stable Oxygen Evolution Electrocatalysts[J]. J. Ind. Eng. Chem., 2018,58:100-104. doi: 10.1016/j.jiec.2017.09.013

    34. [34]

      Yu L, Yang J F, Guan B Y, Lu Y, Lou W D. Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution[J]. Angew. Chem. Int. Ed., 2018,57(1):172-176. doi: 10.1002/anie.201710877

    35. [35]

      Gu M L, Wang S C, Chen C, Xiong D K, Yi F Y. Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions[J]. Inorg. Chem., 2020,59(9):6078-6086. doi: 10.1021/acs.inorgchem.0c00100

    36. [36]

      Gan L, Fang J, Wang M R, Hu L T, Zhang K, Lai Y Q, Li J. Preparation of Double-Shell Co9S8/Fe3O4 Embedded in S/N Co-decorated Hollow Carbon nanoellipsoid Derived from Bi-metal Organic Frameworks for Oxygen Evolution Reaction[J]. J. Power Sources, 2018,391:59-66. doi: 10.1016/j.jpowsour.2018.04.082

    37. [37]

      Dutta S, Indra A, Feng Y, Song T, Paik U. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33766-33774. doi: 10.1021/acsami.7b07984

    38. [38]

      Zhang W D, Hu Q T, Wang L L, Gao J, Zhu H Y, Yan X D, Gu Z G. In-Situ Generated Ni-MOF/LDH Heterostructures with Abundant Phase Interfaces for Enhanced Oxygen Evolution Reaction[J]. Appl. Catal. B, 2021,286119906. doi: 10.1016/j.apcatb.2021.119906

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(5)
  • Abstract views(1060)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return