Citation: Ya-Xiang SHI, Wen-Da ZHANG, Xin FANG, Xiao-Dong YAN, Zhi-Guo GU. Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2193-2202. doi: 10.11862/CJIC.2021.249 shu

Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties

  • Corresponding author: Zhi-Guo GU, zhiguogu@jiangnan.edu.cn
  • Received Date: 18 June 2021
    Revised Date: 27 September 2021

Figures(8)

  • A three-dimensional metal-containing porous organic polymer (Fe2-POP) was synthesized using ferrous chloride, 2, 6-diformyl-4-methylphenol dioxime (H3DFMP) and tetra(4-(dihydroxy)borylphenyl)methane (TBPM) through one-step coordination and boric acid esterification dehydration polymerization reaction. Binuclear iron as the linear unit was formed by coordination between iron ion and H3DFMP, while TBPM was used as the tetrahedral linking unit, so that the three-dimensional porous organic polymer Fe2-POP with dia topology was produced. X-ray single crystal diffraction analysis of the model compound (MC-1) verified the structural characteristics of the dinuclear ferrous unit. Infrared spectroscopy and solid-state nuclear magnetism characterizations proved the formation of C=N and B-O in Fe2-POP. Fe2-POP had a high specific surface area of 510 m2·g-1 and uniform pore size (0.6-0.8 nm). X-ray photoelectron spectroscopy indicated the presence of divalent iron in Fe2-POP. Scanning electron microscopy and transmission electron microscopy showed that Fe2-POP was composed of 50-100 nm sphere-shaped particles. Electrochemical tests showed that Fe2-POP exhibited excellent electrochemical properties towards oxygen evolution reaction, and it only needed a small overpotential of 258 mV to deliver a current density of 10 mA·cm-2, and the Tafel slope was 71.0 mV·dec-1.
  • 加载中
    1. [1]

      Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction[J]. ACS Catal., 2017,8(1):651-655.  

    2. [2]

      Cui X, Lei S, Wang A C, Gao L K, Zhang Q, Yang Y K, Lin Z Q. Emerging Covalent Organic Frameworks Tailored Materials for Electrocatalysis[J]. Nano Energy, 2020,70:2211-2855.  

    3. [3]

      Zhao J, Zhang J J, Li Z Y, Bu X H. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction[J]. Small, 2020,16(51)e2003916. doi: 10.1002/smll.202003916

    4. [4]

      Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives[J]. Chem. Soc. Rev., 2017,46(2):337-365. doi: 10.1039/C6CS00328A

    5. [5]

      Oscar D M, Isis L Y, Koper T M, Federico C V. Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction[J]. ACS Catal., 2015,5(9):5380-5387. doi: 10.1021/acscatal.5b01638

    6. [6]

      Wu Z P, Lu X F, Zang S Q, Lou X W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction[J]. Adv. Funct. Mater., 2020,30(15)1910274. doi: 10.1002/adfm.201910274

    7. [7]

      Slater A G, Cooper A I. Function-Led Design of New Porous Materials[J]. Science, 2015,348(6238)aaa8075. doi: 10.1126/science.aaa8075

    8. [8]

      Das S, Heasman P, Ben T, Qiu S L. Porous Organic Materials: Strategic Design and Structure-Function Correlation[J]. Chem. Rev., 2017,117(3):1515-1563. doi: 10.1021/acs.chemrev.6b00439

    9. [9]

      Jin H Y, Guo C X, Liu X, Liu J L, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chem. Rev., 2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689

    10. [10]

      Li Z E, He T, Gong Y F, Jiang D L. Covalent Organic Frameworks: Pore Design and Interface Engineering[J]. Acc. Chem. Res., 2020,53(8):1672-1685. doi: 10.1021/acs.accounts.0c00386

    11. [11]

      Xu Y H, Jin S B, Xu H, Atsushi N, Jiang D L. Conjugated Microporous Polymers: Design, Synthesis and Application[J]. Chem. Soc. Rev., 2013,42(20):8012-8031. doi: 10.1039/c3cs60160a

    12. [12]

      Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Metal-Covalent Organic Frameworks (MCOFs): A Bridge between Metal-Organic Frameworks and Covalent Organic Frameworks[J]. Angew. Chem. Int. Ed., 2020,59(33):13722-13733. doi: 10.1002/anie.202004796

    13. [13]

      Bhat S A, Das C, Maji T K. Metallated Azo-Naphthalene Diimide Based Redox Active Porous Organic Polymer as an Efficient Water Oxidation Electrocatalyst[J]. J.Mater.Chem.A, 2018,6(40):19834-19842. doi: 10.1039/C8TA06588H

    14. [14]

      Jia H K, Yao Y C, Gao Y Y, Lu D P, Du P W. Pyrolyzed Cobalt Porphyrin-Based Conjugated Mesoporous Polymers as Bifunctional Catalysts for Hydrogen Production and Oxygen Evolution in Water[J]. Chem. Commun., 2016,52(92):13483-13486. doi: 10.1039/C6CC06972J

    15. [15]

      Guan X Y, Chen F Q, Fang Q R, Qiu S L. Design and Applications of Three Dimensional Covalent Organic Frameworks[J]. Chem. Soc. Rev., 2020,49(5):1357-1384. doi: 10.1039/C9CS00911F

    16. [16]

      Dolganov A V, Belov A S, Novikov V V, Vologzhanina A V, Mokhir A, Bubnov Y N, Voloshin Y Z. Iron vs. Cobalt Clathrochelate Electrocatalysts of HER: The First Example on a Cage Iron Complex[J]. Dalton. Trans., 2013,42(13):4373-4376.  

    17. [17]

      Dolganov A V, Tarasova O V, Ivleva A Y, Chernyarva O Y, Grigoryan K A, Ganz V S. Iron(Ⅱ) Clathrochelates as Electrocatalysts of Hydrogen Evolution Reaction at Low pH[J]. Int. J. Hydrog. Energy, 2017,42(44):27084-27093. doi: 10.1016/j.ijhydene.2017.09.080

    18. [18]

      Cheikh J A, Villagra A, Ranjbari A, Pradon A, Antuch M, Dragoe D, Millet P, Assaud L. Engineering a Cobalt Clathrochelate/Glassy Carbon Interface for the Hydrogen Evolution Reaction[J]. Appl. Catal. B, 2019,250:292-300. doi: 10.1016/j.apcatb.2019.03.036

    19. [19]

      Bila J L, Marmier M, Zhurov K O, Scopelliti R, Zivkovic I, Ronnow H M, Shaik N E, Sienkiewicz A, Fink C, Severin K. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.  

    20. [20]

      Sumit K, Thomas W, Eckhard B, Phalguni C. Deliberate Synthesis for Magnetostructural Study of Linear Tetranuclear Complexes BMnMnB, MnMnMnMn, MnMnMnMn, FeMnMnFe, and CrMnMnCr Influence of Terminal Ions on the Exchange Coupling[J]. Inorg. Chem., 2006,45:5911-5923. doi: 10.1021/ic060409a

    21. [21]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    22. [22]

      Sheldrick G M. Bruker Analytical X-ray Systems, Madison, WI, 1996.

    23. [23]

      (a) Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, Universität of Göttingen, Göttingen, Germany, 1997.
      (b)Sheldrick G M. A Short History of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64(1): 112-122

    24. [24]

      Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[J]. J. Am. Chem. Soc., 2015,137(26):8352-8355. doi: 10.1021/jacs.5b04147

    25. [25]

      Ma Y X, Li Z J, Wei L, Ding Y B, Wang W. A Dynamic Three-Dimensional Covalent Organic Framework[J]. J. Am. Chem. Soc., 2017,139(14):4995-4998. doi: 10.1021/jacs.7b01097

    26. [26]

      Wu C Y, Liu Y M, Liu H, Duan C H, Pan Q Y, Zhu J, Hu F, Ma X Y, Jiu T G, Li Z B, Zhao Y J. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement[J]. J. Am. Chem. Soc., 2018,140(3):10016-10024.  

    27. [27]

      Bila, Marmier, Zhurov, Scopelliti, Zickovic, Ronnow, Shalk, Sienkiewicz, Cornel, Severin. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.  

    28. [28]

      Capon J F, Gloaguen F, Schollhammer P, Talarmin J. Catalysis of the Electrochemical H 2 Evolution by Di-iron Sub-site Models[J]. Coord. Chem. Rev., 2005,249(15/16):1664-1676.  

    29. [29]

      Lu H, Wang C, Chen J J, Ge R, Leng W G, Dong B, Huang J, Gao Y N. A Novel 3D Covalent Organic Framework Membrane Grown on a Porous α-Al2O3 Substrate under Solvothermal Conditions[J]. Chem. Commun., 2015,51(85):15562-15565. doi: 10.1039/C5CC06742A

    30. [30]

      Alameddine B, Shetty S, Baig N, Saleh A M, Fakhreia A S. Synthesis and Characterization of Metalorganic Polymers of Intrinsic Microporosity Based on Iron(Ⅱ) Clathrochelate[J]. Polymer, 2017,122:200-207. doi: 10.1016/j.polymer.2017.06.048

    31. [31]

      Long X, Li J K, Xiao S, Yan K Y, Wang Z L, Chen H N, Yang S H. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2014,53(29):7584-7588. doi: 10.1002/anie.201402822

    32. [32]

      Babar P T, Pawar B S, Lokhande A C, Gang M G, Jang J S, Suryawanshi M P, Pawar S M, Kim J H. Annealing Temperature Dependent Catalytic Water Oxidation Activity of Iron Oxyhydroxide Thin Films[J]. J. Energy Chem., 2017,26(4):757-761. doi: 10.1016/j.jechem.2017.04.012

    33. [33]

      Lee J Y, Lee H Y, Lim B K. Chemical Transformation of Iron Alkoxide Nanosheets to FeOOH Nanoparticles for Highly Active and Stable Oxygen Evolution Electrocatalysts[J]. J. Ind. Eng. Chem., 2018,58:100-104. doi: 10.1016/j.jiec.2017.09.013

    34. [34]

      Yu L, Yang J F, Guan B Y, Lu Y, Lou W D. Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution[J]. Angew. Chem. Int. Ed., 2018,57(1):172-176. doi: 10.1002/anie.201710877

    35. [35]

      Gu M L, Wang S C, Chen C, Xiong D K, Yi F Y. Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions[J]. Inorg. Chem., 2020,59(9):6078-6086. doi: 10.1021/acs.inorgchem.0c00100

    36. [36]

      Gan L, Fang J, Wang M R, Hu L T, Zhang K, Lai Y Q, Li J. Preparation of Double-Shell Co9S8/Fe3O4 Embedded in S/N Co-decorated Hollow Carbon nanoellipsoid Derived from Bi-metal Organic Frameworks for Oxygen Evolution Reaction[J]. J. Power Sources, 2018,391:59-66. doi: 10.1016/j.jpowsour.2018.04.082

    37. [37]

      Dutta S, Indra A, Feng Y, Song T, Paik U. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33766-33774. doi: 10.1021/acsami.7b07984

    38. [38]

      Zhang W D, Hu Q T, Wang L L, Gao J, Zhu H Y, Yan X D, Gu Z G. In-Situ Generated Ni-MOF/LDH Heterostructures with Abundant Phase Interfaces for Enhanced Oxygen Evolution Reaction[J]. Appl. Catal. B, 2021,286119906. doi: 10.1016/j.apcatb.2021.119906

  • 加载中
    1. [1]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    2. [2]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    10. [10]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    19. [19]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    20. [20]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

Metrics
  • PDF Downloads(8)
  • Abstract views(2816)
  • HTML views(410)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return