Citation: Zhuo-Lei LIU, Jing-Wen LI, Meng-Long SUN, Yong-Wei ZHANG, Chang-Wei DANG, Si-Ning YUN. Synthesis and Electrocatalytic Properties of MnWO4/Biomass-Derived Carbon Nanocomposite Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2219-2226. doi: 10.11862/CJIC.2021.247 shu

Synthesis and Electrocatalytic Properties of MnWO4/Biomass-Derived Carbon Nanocomposite Catalyst

  • Corresponding author: Si-Ning YUN, yunsining@xauat.edu.cn
  • Received Date: 4 July 2021
    Revised Date: 14 September 2021

Figures(6)

  • A bimetal oxide embedded biomass-derived carbon (MnWO4/BC) nanocomposite catalyst was synthesized using a co-precipitation approach, and it was used as a counter electrode (CE) catalyst to assemble a dye-sensitized solar cell (DSSC). The catalytic performance and photovoltaic performance of MnWO4/BC in non-iodine system was explored. To boost the photovoltaic performance of DSSC, a novel copper redox couple (Cu2+/Cu+) and dye (D35, Y123) were adopted for replacing the traditional I-/I3- redox couple and N719 dye, respectively. The resulting novel DSSC with MnWO4/BC nanocomposite CE catalyst had a photovoltage of approximately 0.89 V. Moreover, it exhibited power conversion efficiency (PCE) of 3.57% and 1.59% for D35 and Y123 dyes, respectively, which were 14.4% and 27.0%, respectively, higher than that in the case of Pt. Fifty continuous cyclic voltammetry tests show that MnWO4/BC catalyst has good electrochemical stability. It is observed that the catalytic activity of MnWO4/BC enhanced significantly due to the superior conductivity and the special pore structure of BC, the excellent electrocatalytic ability of MnWO4, and the synergistic effect between MnWO4 and BC.
  • 加载中
    1. [1]

      Ji Y J, Zhang M D, Cui J H, Lin K C, Zheng H G, Zhu J J, Samia A C S. Highly-Ordered TiO2 Nanotube Arrays with Double-Walled and Bamboo-Type Structures in Dye-Sensitized Solar Cells[J]. Nano Energy, 2012,1(6):796-804. doi: 10.1016/j.nanoen.2012.08.006

    2. [2]

      Zhang M D, Zhang Z Y, Bao Z Q, Ju Z M, Wang X Y, Zheng H G, Ma J, Zhou X F. Promising Alkoxy-Wrapped Porphyrins with Novel Push-Pull Moieties for Dye-Sensitized Solar Cells[J]. J. Mater. Chem. A, 2014,2(36):14883-14889. doi: 10.1039/C4TA02335H

    3. [3]

      Zhao D X, Bian L Y, Luo Y X, Zhang M D, Cao H, Chen M D. Three-Dimensional D-π-A Organic Sensitizer with Coplanar Triphenylamine Moiety for Dye-Sensitized Solar Cells[J]. Dyes Pigm., 2017,140:278-285. doi: 10.1016/j.dyepig.2017.01.051

    4. [4]

      Wang M, Grätzel C, Zakeeruddin S M, Grätzel M. Recent Developments in Redox Electrolytes for Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2012,5(11):9394-9405. doi: 10.1039/c2ee23081j

    5. [5]

      Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, Hua J, Zakeeruddin S M, Moser J E, Grätzel M, Hagfeldt A. Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting[J]. Nat. Photonics, 2017,11(6):372-378. doi: 10.1038/nphoton.2017.60

    6. [6]

      Hattori S, Wada Y, Yanagida S, Fukuzumi S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2005,127(26):9648-9654. doi: 10.1021/ja0506814

    7. [7]

      Higashino T, Iiyama H, Nimura S, Kurumisawa Y, Imahori H. Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells[J]. Inorg. Chem., 2020,59(1):452-459. doi: 10.1021/acs.inorgchem.9b02740

    8. [8]

      Hagberg D P, Jiang X, Gabrielsson E, Linder M, Marinado T, Brinck T, Hagfeldt A, Sun L. Symmetric and Unsymmetric Donor Functionalization. Comparing Structural and Spectral Benefits of Chromophores for Dye-Sensitized Solar Cells[J]. J. Mater. Chem., 2009,19(39):7232-7238. doi: 10.1039/b911397p

    9. [9]

      Yun S N, Hagfeldt A, Ma T L. Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv. Mater., 2014,26(36):6210-6237. doi: 10.1002/adma.201402056

    10. [10]

      Jiang H, Ren Y M, Zhang W W, Wu Y Z, Socie E C, Carlsen B I, Moser J E, Tian H, Zakeeruddin S M, Zhu W H, Grätzel M. Phenanthrene-Fused-Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copper-Electrolyte-Based Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2020,59(24):9324-9329. doi: 10.1002/anie.202000892

    11. [11]

      Tang Q W, Duan J L, Duan Y Y, He B L, Yu L M. Recent Advances in Alloy Counter Electrodes for Dye-Sensitized Solar Cells[J]. A Critical Review. Electrochim. Acta, 2015,178:886-899. doi: 10.1016/j.electacta.2015.08.072

    12. [12]

      ZHANG T H, YUN S N, LI J, LIU Y F, ZHOU X, HOU Y Z, FANG W. Alloy Counter Electrodes in Dye-Sensitized Solar Cells[J]. Chin. Sci. Bull., 2016,61(Z1):478-488.  

    13. [13]

      Yun S N, Freitas J N, Nogueira A F, Wang Y, Ahmad S, Wang Z S. Dye-Sensitized Solar Cells Employing Polymers[J]. Prog. Polym. Sci., 2016,59:1-40. doi: 10.1016/j.progpolymsci.2015.10.004

    14. [14]

      Park B W, Pazoki M, Aitola K, Jeong S, Johansson E M, Hagfeldt A, Boschloo G. Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells[J]. ACS Appl. Mater. Interfaces, 2014,6(3):2074-2079. doi: 10.1021/am405108d

    15. [15]

      Yun S N, Liu Y F, Zhang T H, Ahmad S. Recent Advances in Alternative Counter Electrode Materials for Co-Mediated Dye-Sensitized Solar Cells[J]. Nanoscale, 2015,7(28):11877-11893. doi: 10.1039/C5NR02433A

    16. [16]

      Yun S N, Hagfeldt A. Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells: Vol. 2. Weinheim: Wiley-VCH, 2018: 231-349

    17. [17]

      Pang B, Lin S, Shi Y T, Wang Y Y, Chen Y J, Ma S, Feng J G, Zhang C K, Yu L Y, Dong L F. Synthesis of CoFe2O4/Graphene Composite as a Novel Counter Electrode for High Performance Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2019,297:70-76. doi: 10.1016/j.electacta.2018.11.170

    18. [18]

      Li Z X, Qi W K, Li L D, Ma Z Y, Lai W D, Li L, Jin X S, Zhang Y C, Zhang W M. Preparation of Carbon Nanofibers Supported Bi2MoO6 Nanosheets as Counter Electrode Materials on Titanium Mesh Substrate for Dye-Sensitized Solar Cells[J]. Sol. Energy, 2021,214:502-509. doi: 10.1016/j.solener.2020.11.064

    19. [19]

      Li J W, Yun S N, Han F, Si Y M, Arshad A, Zhang Y W, Chidambaram B, Zafar N, Qiao X Y. Biomass-Derived Carbon Boosted Catalytic Properties of Tungsten-Based Nanohybrids for Accelerating the Triiodide Reduction in Dye-Sensitized Solar Cells[J]. J. Colloid Interface Sci., 2020,578:184-194. doi: 10.1016/j.jcis.2020.04.089

    20. [20]

      Han F, Yun S N, Shi J, Zhang Y W, Si Y M, Wang C, Zafar N, Li J W, Qiao X Y. Efficient Dual-Function Catalysts for Triiodide Reduction Reaction and Hydrogen Evolution Reaction Using Unique 3D Network Aloe Waste-Derived Carbon-Supported Molybdenum-Based Bimetallic Oxide Nanohybrids[J]. Appl. Catal. B, 2020,273119004. doi: 10.1016/j.apcatb.2020.119004

    21. [21]

      Zhang Y W, Yun S N, Wang Z Q, Zhang Y L, Wang C, Arshad A, Han F, Si Y M, Fang W. Highly Efficient Bio-Based Porous Carbon Hybridized with Tungsten Carbide as Counter Electrode for Dye-Sensitized Solar Cell[J]. Ceram. Int., 2020,46(10):15812-15821. doi: 10.1016/j.ceramint.2020.03.128

    22. [22]

      Yun S N, Shi J, Si Y M, Sun M L, Zhang Y W, Arshad A, Yang C. Insight into Electrocatalytic Activity and Mechanism of Bimetal Niobium-Based Oxides in Situ Embedded into Biomass-Derived Porous Carbon Skeleton Nanohybrids for Photovoltaics and Alkaline Hydrogen Evolution[J]. J. Colloid Interface Sci., 2021,601:12-29. doi: 10.1016/j.jcis.2021.05.060

    23. [23]

      Zhang Y W, Yun S N, Qiao X Y, Sun M L, Dang J E, Dang C W, Yang J J. Hybridization of Mn/Ta Bimetallic Oxide and Mesh-like Porous Bio-carbon for Boosting Copper Reduction for D35/Y123-Sensitized Solar Cells and Hydrogen Evolution[J]. J. Alloys Compd., 2022,896162349.  

    24. [24]

      Yang L, Wang Y G, Wang Y J, Wang X F, Wang L J, Han G R. Shape-Controlled Synthesis of MnWO4 Nanocrystals via a Simple Hydrothermal Method[J]. J. Alloys Compd., 2013,578:215-219. doi: 10.1016/j.jallcom.2013.05.133

    25. [25]

      Naik K K, Gangan A S, Pathak A, Chakraborty B, Nayak S K, Rout C S. Facile Hydrothermal Synthesis of MnWO4 Non-Enzymatic Glucose Sensing and Supercapacitor Properties with Insights from Density Functional Theory Simulations[J]. ChemistrySelect, 2017,2(20):5707-5715. doi: 10.1002/slct.201700873

    26. [26]

      Balamurugan J, Thanh T D, Kim N H, Lee J H. Nitrogen-Doped Graphene Nanosheets with FeN Core-Shell Nanoparticles as High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells[J]. Adv. Mater., 2016,3(1)1500348.  

    27. [27]

      Yun S N, Hagfeldt A, Ma T L. Superior Catalytic Activity of Sub-5 mm-Thick Pt/SiC Films as Counter Electrodes for Dye-Sensitized Solar Cells[J]. ChemCatChem, 2014,6(6):1584-1588. doi: 10.1002/cctc.201402003

    28. [28]

      Yun S N, Wang L, Zhao C Y, Wang Y X, Ma T L. A New Type of Low-Cost Counter Electrode Catalyst Based on Platinum Nanoparticles Loaded onto Silicon Carbide (Pt/SiC) for Dye-Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2013,15(12):4286-4290. doi: 10.1039/c3cp44048f

    29. [29]

      Tang Q W, Zhang H H, Meng Y Y, He B L, Yu L M. Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2015,54(39):11448-11452. doi: 10.1002/anie.201505339

    30. [30]

      Li L L, Chang C W, Wu H H, Shiu J W, Wu P T, Diau W G E. Morphological Control of Platinum Nanostructures for Highly Efficient Dye-Sensitized Solar Cells[J]. J. Mater. Chem., 2012,22(13):6267-6273. doi: 10.1039/c2jm16135d

    31. [31]

      Chiu I T, Li C T, Lee C P, Chen P Y, Tseng Y H, Vittal R, Ho K C. Nanoclimbing-Wall-like CoSe2/Carbon Composite Film for the Counter Electrode of a Highly Efficient Dye-Sensitized Solar Cell: A Study on the Morphology Control[J]. Nano Energy, 2016,22:594-606. doi: 10.1016/j.nanoen.2016.02.060

    32. [32]

      Zhang M D, Huang C Y, Song M X, Zhao D X, Cao H, Chen M D. D-D-π-A Organic Dye Containing Rhodanine-3-Acetic Acid Moiety for Dye-Sensitized Solar Cells[J]. Mendeleev Commun., 2016,26(4):288-290. doi: 10.1016/j.mencom.2016.07.006

    33. [33]

      Li Y J, Liu X F, Li H S, Shi D X, Jiao Q Z, Zhao Y, Feng C H, Bai X P, Wang H X, Wu Q. Rational Design of Metal Organic Framework Derived Hierarchical Structural Nitrogen Doped Porous Carbon Coated CoSe/Nitrogen Doped Carbon Nanotubes Composites as a Robust Pt-Free Electrocatalyst for Dye-Sensitized Solar Cells[J]. J. Power Sources, 2019,422:122-130. doi: 10.1016/j.jpowsour.2019.03.041

    34. [34]

      Das S, Sudhagar P, Verma V, Song D, Ito E, Lee S Y, Kang Y S, Choi W. Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells[J]. Adv. Funct. Mater., 2011,21(19):3729-3736. doi: 10.1002/adfm.201101191

    35. [35]

      Wen Z H, Cui S M, Pu H H, Mao S, Yu K H, Feng X L, Chen J H. Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst[J]. Adv. Mater., 2011,23(45):5445-5450. doi: 10.1002/adma.201102772

    36. [36]

      Mehmood U, Ahmad W, Ahmed S. Nickel Impregnated Multi-Walled Carbon Nanotubes (Ni/MWCNT) as Active Catalyst Materials for Efficient and Platinum-Free Dye-Sensitized Solar Cells (DSSCs)[J]. Sustain. Energ. Fuels, 2019,3(12):3473-3480. doi: 10.1039/C9SE00583H

    37. [37]

      Xu C, Jiang Y, Yang J, Wu W, Qian X, Hou L. Co-Fe-MoSx Hollow Nanoboxes as High-Performance Counter Electrode Catalysts for Pt-Free Dye-Sensitized Solar Cells[J]. Chem. Eng. J., 2018,343:86-94. doi: 10.1016/j.cej.2018.02.121

    38. [38]

      Yun S N, Zhang H, Pu H, Chen J, Hagfeldt A, Ma T L. Metal Oxide/Carbide/Carbon Nanocomposites: In Situ Synthesis, Characterization, Calculation, and Their Application as an Efficient Counter Electrode Catalyst for Dye-Sensitized Solar Cells[J]. Adv. Energy Mater., 2013,3(11):1407-1412. doi: 10.1002/aenm.201300242

  • 加载中
    1. [1]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(3)
  • Abstract views(2104)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return