Citation: Jing LIANG, Lu HAN, Bao LI, Zhen-Zhu SHI, Xing-Chi LIU, Li-Chao PENG, Xue-Yan ZOU. Fast and Efficient Immobilization Behavior of Bifunctional Magnetic Nano-Amendment Against Multi-heavy Metal[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1981-1990. doi: 10.11862/CJIC.2021.243 shu

Fast and Efficient Immobilization Behavior of Bifunctional Magnetic Nano-Amendment Against Multi-heavy Metal

Figures(9)

  • Ferroferric oxide/L-cysteine (Fe3O4/Cys) magnetic nanospheres were synthesized by one pot method. Subsequently, the obtained Fe3O4/Cys were further modified by conjugating iminodiacetic acid (IDA) to obtain Fe3O4/Cys/IDA nanospheres. It was indicated that L-Cys was grafted on the surface of Fe3O4 by -SH group and Fe3O4/Cys/IDA, with more branched chains and more -COOH groups, was obtained by amido bond formed by the -NH2 group of Fe3O4/Cys and the -COOH group of IDA. Due to the alternative short and long chains grafting, Fe3O4/Cys/IDA nanospheres displayed high density modification of -COOH groups. Meanwhile, we found that the adsorption of Pb2+, Cd2+, Cu2+, Co2+, Ni2+, Zn2+ ions by Fe3O4/Cys/IDA nanospheres were specific adsorption and that of Hg2+ ions was unspecific adsorption. And all the complexes (Fe3O4/Cys/IDA-M, M was the metal) obtained after immobilization exhibited good stability. Experimental equilibrium data were also analyzed by the Langmuir and Freundlich models, and the best fit was obtained with the Langmuir isotherm equation, which was monolayer homogeneous adsorption. The kinetic study indicated that the adsorption kinetic data was well described by the pseudo-second kinetic model and the maximum immobilization capacity was 49.05 mg·g-1, which was a fast and efficient heavy metal immoblization material.
  • 加载中
    1. [1]

      Xiao T W, Mi M M, Wang C Y, Qian M, Chen Y H, Zheng L Q, Zhang H S, Hu Z B, Shen Z G, Xia Y. A Methionine-R-Sulfoxide Reductase, OsMSRB5, is Required for Rice Defense Against Copper Toxicity[J]. Environ. Exp. Bot., 2018,153:45-53. doi: 10.1016/j.envexpbot.2018.04.006

    2. [2]

      Zhang L Z, Wang X B, Na C. Enhanced Cr (ⅵ) Immobilization on Goethite Derived from an Extremely Acidic Environment[J]. Environ. Sci. Nano, 2019,6:2185-2194. doi: 10.1039/C9EN00277D

    3. [3]

      Tan J J, He S B, Yan S H, Li Y N, Li H, Zhang H, Zhao L, Li L J. Exogenous EDDS Modifies Copper-Induced Various Toxic Responses in Rice[J]. Protoplasma, 2014,251:1213-1221. doi: 10.1007/s00709-014-0628-x

    4. [4]

      Wanner M, Birkhofer K, Fischer T, Shimizu M, Shimano S, Puppe D. Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan[J]. Microb. Ecol., 2020,79:123-133. doi: 10.1007/s00248-019-01383-x

    5. [5]

      Zhang X L, Zhao X L, Li B Z, Xia J C, Miao Y C. SRO1 Regulates Heavy Metal Mercury Stress Response in Arabidopsis Thaliana[J]. Chin. Sci. Bull., 2014,59:3134-3141. doi: 10.1007/s11434-014-0356-9

    6. [6]

      Hu W Y, Wang H F, Dong L R, Huang B, Borggaard O K, Hansen H C B, He Y, Holm P E. Source Identification of Heavy Metals in Peri-Urban Agricultural Soils of Southeast China: An Integrated Approach[J]. Environ. Pollut., 2018,237:650-661. doi: 10.1016/j.envpol.2018.02.070

    7. [7]

      Viana F, Huertas R, Danulat E. Heavy Metal Levels in Fish from Coastal Waters of Uruguay[J]. Arch. Environ. Contam. Toxicol., 2005,48:530-537. doi: 10.1007/s00244-004-0100-6

    8. [8]

      Chen M, Cao X J, Mayouma L, Lu X F, Yvon J, Feng L. Trace Element Characteristics of a Gorham-Stout Syndrome Sufferer[J]. Chin. Sci. Bull., 2008,53:672-675. doi: 10.1360/csb2008-53-6-672

    9. [9]

      WANG H M, TAN K, WU F Y, CHEN Y, CHEN L H. Study of the Retrieval and Adsorption Mechanism of Soil Heavy Metals Based on Spectral Absorption Characteristics[J]. Spectroscopy and Spectral Analysis, 2020,40:316-323.  

    10. [10]

      Zhang P, Wang R L, Ju Q, Li W Q, Tran P L, Xu J. The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation[J]. Plant Physiol., 2019,180:529-542. doi: 10.1104/pp.18.01380

    11. [11]

      Guo J K, Lv X, Jia H L, Hua L, Ren X H, Muhammad H, Wei T, Ding Y Z. Effects of EDTA and Plant Growth-Promoting Rhizobacteria on Plant Growth and Heavy Metal Uptake of Hyperaccumulator Sedum Alfredii Hance[J]. J. Environ. Sci., 2020,88:361-369. doi: 10.1016/j.jes.2019.10.001

    12. [12]

      Singh P K, Wang W J, Shrivastava A K. Cadmium-Mediated Morpho-logical, Biochemical and Physiological Tuning in Three Different Anabaena Species[J]. Aquat. Toxicol., 2018,202:36-45. doi: 10.1016/j.aquatox.2018.06.011

    13. [13]

      Chen L, Gao J H, Zhu Q G, Wang Y P, Wang Y. Accumulation and Output of Heavy Metals by the Invasive Plant Spartina Alterniflora in a Coastal Salt Marsh[J]. Pedosphere, 2018,28:884-894. doi: 10.1016/S1002-0160(17)60369-2

    14. [14]

      Zou X Y, Yin Y B, Zhao Y B, Chen D Y, Dong S. Synthesis of Ferriferous Oxide/L-Cysteine Magnetic Microspheres and Their Adsorption Capacity for Pb(Ⅱ) Ions[J]. Mater. Lett., 2015,150:59-61. doi: 10.1016/j.matlet.2015.02.133

    15. [15]

      Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review[J]. J. Hazard. Mater., 2012,211-212:317-331. doi: 10.1016/j.jhazmat.2011.10.016

    16. [16]

      Xu Y H, Zhao D Y. Reductive Immobilization of Chromate in Water and Soil Using Stabilized Iron Particle[J]. Water Res., 2007,41:2101-2108. doi: 10.1016/j.watres.2007.02.037

    17. [17]

      YAO L N. Arsenic Adsorption Performance of Manganese Oxide Nanoparticles. Qinghai: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2018.

    18. [18]

      ZHANG H P. Adsorptive Removal of Lead Ions from Aqueous Solution Using Manganese Oxides Materials. Nanjing: Nanjing University, 2017.

    19. [19]

      Liu R Q, Zhao D Y. In Situ Immobilization of Cu(Ⅱ) in Soils Using a New Class of Iron Phosphate Nanoparticles[J]. Chemosphere, 2007,68:1867-1876. doi: 10.1016/j.chemosphere.2007.03.010

    20. [20]

      Waychunas G A, Kim C S, Banfield J F. Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms[J]. J. Nanopart. Res., 2005,7:409-433. doi: 10.1007/s11051-005-6931-x

    21. [21]

      Xie L J, Jiang R F, Zhu F, Liu H, Ouyang G F. Application of Functionalized Magnetic Nanoparticles in Sample Preparation[J]. Anal. Bioanal. Chem., 2014,406:377-399. doi: 10.1007/s00216-013-7302-6

    22. [22]

      Zhang Y K, Yan L G, Xu W Y, Guo X Y. Adsorption of Pb(Ⅱ) and Hg (Ⅱ) from Aqueous Solution Using Magnetic CoFe2O4-Reduced Graphene Oxide[J]. J. Mol. Liq., 2014,191:177-182. doi: 10.1016/j.molliq.2013.12.015

    23. [23]

      Li T, Yu Z Y, Yang T L, Xu G L, Guan Y P, Guo C. Modified Fe3O4 Magnetic Nanoparticles for COD Removal in Oil Field Produced Water and Regeneration[J]. Environ. Technol. Innovation, 2021,23:101630-101639. doi: 10.1016/j.eti.2021.101630

    24. [24]

      Zou X Y, Li K, Zhao Y B, Zhang Y, Li B J, Song C P. Ferroferric Oxide/L-Cysteine Magnetic Nanospheres for Capturing Histidine-Tagged Proteins[J]. J. Mater. Chem. B, 2013,1:5108-5113. doi: 10.1039/c3tb20726a

    25. [25]

      Yin Y B, Wei G M, Zou X Y, Zhao Y B. Functionalized Hollow Silica Nanospheres for His-Tagged Protein Purification[J]. Sens. Actuators B, 2015,209:701-705. doi: 10.1016/j.snb.2014.12.049

    26. [26]

      TIAN S F, ZOU X Y, LU H T. Correlation Between Protein Zeta Potential and Capacity Factor of Ion Exchange Chromatography[J]. Chinese J. Inorg. Chem., 2015,31:1329-1334.  

    27. [27]

      Shen X F, Wang Q, Chen W L, Pang Y H. One-Step Synthesis of Water-Dispersible Cysteine Functionalized Magnetic Fe3O4 Nanoparticles for Mercury (Ⅱ) Removal from Aqueous Solutions[J]. Appl. Surf. Sci., 2014,317:1028-1034. doi: 10.1016/j.apsusc.2014.09.033

    28. [28]

      Xu J Y, Tang S Y, Qiu Y R. Pretreatment of Poly(acrylic acid) Sodium by Continuous Diafiltration and Time Revolution of Filtration Potential[J]. J. Cent. South Univ., 2019,26:577-586. doi: 10.1007/s11771-019-4029-3

    29. [29]

      YE J F, LIN D Q, YAO S J. Study on the Correlation Between Protein Zeta Likeness and Ion Exchange Layering Capacity Factors[J]. Journal of Chemical Engineering of Chinese Universities, 2007,21:381-385. doi: 10.3321/j.issn:1003-9015.2007.03.004

    30. [30]

      JIANG Z Q, SONG S, DOU H J, SUN K, WANG Y M, HUANG C F, WEI Z H, QU G X. Synthesis of Polycarboxylic Ligand Capped Fe3O4 Nanoparticles with Excellent Water-Dispersibility via a Ligand-Exchange Approach[J]. Chem. J. Chinese Universities, 2012,33:2609-2616. doi: 10.7503/cjcu20120626

    31. [31]

      Li B J, Zou X Y, Zhao Y B, Sun L, Li S L. Biofunctionalization of Silica Microspheres for Protein Separation[J]. Mater. Sci. Eng. C, 2013,33:2595-2600. doi: 10.1016/j.msec.2013.02.030

    32. [32]

      WANG G F, LI M G, KAN X W. Preparation of Silver Nanoparticles/Cysteine Modified Gold Electrode and Determination of Hydroquinone[J]. Chinese Journal of Applied Chemistry, 2005,22(2):168-171. doi: 10.3969/j.issn.1000-0518.2005.02.011

    33. [33]

      ZOU X Y, LI B J, LI S L, ZHAO Y. Surface Modification of Nanometer Silica and Separation of Glutathione S-Transferase[J]. Journal of Henan University (Natural Science), 2011,41:366-369. doi: 10.3969/j.issn.1003-4978.2011.04.009

    34. [34]

      Ghasemi E, Heydari A, Sillanpää M. Central Composite Design for Optimization of Removal of Trace Amounts of Toxic Heavy Metal Ions from Aqueous Solution Using Magnetic Fe3O4 Functionalized by Guanidine Acetic Acid as an Efficient Nano-Adsorbent[J]. Microchem. J., 2019,147:133-141. doi: 10.1016/j.microc.2019.02.056

    35. [35]

      Zou X Y, Zhao Y B, Zhang Z J. Preparation of Hydroxyapatite Nano-structures with Different Morphologiesand Adsorption Behavior on Seven Heavy Metals Ions[J]. J. Contam. Hydrol., 2019,226:103538-103544. doi: 10.1016/j.jconhyd.2019.103538

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    15. [15]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    18. [18]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

Metrics
  • PDF Downloads(2)
  • Abstract views(877)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return