Citation: Ken-Ken LI, Song-Lei WANG, Rui-Ming LUO, Liang MA, Li LIU, Pei-Yuan WEI, Ye ZHANG. Nickel Bicarbonate Nanoparticles Loaded on Carbon Paper for Enzyme-Free Glucose Electrochemical Sensor[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2002-2010. doi: 10.11862/CJIC.2021.239 shu

Nickel Bicarbonate Nanoparticles Loaded on Carbon Paper for Enzyme-Free Glucose Electrochemical Sensor

  • Corresponding author: Song-Lei WANG, wangsonglei163@126.com
  • Received Date: 26 April 2021
    Revised Date: 30 August 2021

Figures(8)

  • Nickel bicarbonate nanoparticles were grown in situ on carbon paper by one-step hydrothermal method. Powder X-ray diffraction and scanning electron microscopy were used to characterize the structure and morphology of the material. It was found that when pure phase Ni(HCO3)2 was loaded on carbon paper, it could provide more catalytically active sites which is beneficial to electron transport and catalytic reaction. Cyclic voltammetry and timecurrent response curves showed that the detection limit of the electrode was 0.98 μmol·L-1, the linear range was 2.95-1.02 mmol·L-1, and the sensitivity was 935 μA·L·mmol-1·cm-2. At the same time, it also exhibited excellent specificity and stability. In addition, the sensor can realize the rapid detection of glucose in dairy products. These results show that the synergistic effect of transition metal and conductive substrate can enhance the overall conductivity and catalytic performance of the composite material.
  • 加载中
    1. [1]

      WU J, LIU Y D, LI B, HU J. Qualitative and Quantitative Detection of Glucose and Sucrose in Milk Powder Based on Terahertz Spectroscopy[J]. Spectrosc. Spectr. Anal., 2019,39(8):2568-2573.  

    2. [2]

      Liu S, Tian J Q, Wang L, Luo Y L, Sun X P. A General Strategy for the Production of Photoluminescent Carbon Nitride Dots from Organic Amines and Their Application as Novel Peroxidase-like Catalysts for Colorimetric Detection of H2O2 and Glucose[J]. RSC Adv., 2012,2(2):411-413. doi: 10.1039/C1RA00709B

    3. [3]

      Larsen T. Fluorometric Determination of Free Glucose and Glucose 6-Phosphate in Cows' Milk and Other Opaque Matrices[J]. Food Chem, 2015,166:283-286. doi: 10.1016/j.foodchem.2014.06.017

    4. [4]

      Xie W Q, Gong Y X, Yu K X. Rapid Quantitative Detection of Glucose Content in Glucose Injection by Reaction Headspace Gas Chromatography[J]. J. Chromatogr. A, 2017,1520:143-146. doi: 10.1016/j.chroma.2017.09.018

    5. [5]

      Parashuram L, Sreenivasa S, Akshatha S, Udayakumar V, Kumar S S. A Non-enzymatic Electrochemical Sensor Based on ZrO2: Cu(Ⅰ) Nano-sphere Modified Carbon Paste Electrode for Electro-catalytic Oxidative Detection of Glucose in Raw Citrus Aurantium var[J]. Sinensis. Food Chem., 2019,300125178. doi: 10.1016/j.foodchem.2019.125178

    6. [6]

      Hui G H, Lu H Y, Jiang Z M, Zhu D H, Wan H F. Study of Small-Cell Lung Cancer Cell-Based Sensor and Its Applications in Chemo-therapy Effects Rapid Evaluation for Anticancer Drugs[J]. Biosens. Bioelectron., 2017,97:184-195. doi: 10.1016/j.bios.2017.05.050

    7. [7]

      Wang Q Z, Xu Z H, Zhao Y J, Zhangsun H, Bu T, Zhang C Q, Wang X, Wang L. Bio-inspired Self-Cleaning Carbon Cloth Based on Flower-like Ag Nanoparticles and Leaf-like MOF: A High-Performance and Reusable Substrate for SERS Detection of Azo Dyes in Soft Drinks[J]. Sens. Actuators B, 2020,329129080.  

    8. [8]

      Zheng H N, Ying X G, Wang W X, Chen Z Z, Shao C N, Zhou H M, Wang S Y, Ping X Y, Li J, Yi X M, Deng S H, Hui G H. Study of Sensitivity Evaluation on Ridgetail White Prawn (Exopalaemon Carinicauda) Quality Examination Methods[J]. Int. J. Food Prop., 2019,22(1):942-951. doi: 10.1080/10942912.2019.1617304

    9. [9]

      Zhang X H, Zhao Z D, Lou X W, Li J, Hui G H. A Maltose, L-Rhamnose Sensor Based on Porous Cu Foam and Electrochemical Amperometric i-t Scanning Method[J]. J. Food Meas. Charact., 2017,11(2):548-555. doi: 10.1007/s11694-016-9422-0

    10. [10]

      Zhao Y J, Zheng X H, Wang Q Z, Zhe T T, Bai Y W, Bu T, Zhang M, Wang L. Electrochemical Behavior of Reduced Graphene Oxide/Cyclodextrins Sensors for Ultrasensitive Detection of Imidacloprid in Brown Rice[J]. Food Chem., 2020,333127495. doi: 10.1016/j.foodchem.2020.127495

    11. [11]

      Lin L Y, Karakocak B B, Kavadiya S, Soundappan T, Biswas P. A Highly Sensitive Non-enzymatic Glucose Sensor Based on Cu/Cu2O/CuO Ternary Composite Hollow Spheres Prepared in a Furnace Aerosol Reactor[J]. Sens. Actuators B, 2018,259:745-752. doi: 10.1016/j.snb.2017.12.035

    12. [12]

      Wang X, Ge C Y, Chen K, Zhang Y X. An Ultrasensitive Non-enzymatic Glucose Sensors Based on Controlled Petal-like CuO Nanostructure[J]. Electrochim. Acta, 2018,259:225-232. doi: 10.1016/j.electacta.2017.10.182

    13. [13]

      Larsen T. Fluorometric Determination of Free Glucose and Glucose 6-Phosphate in Cows' Milk and Other Opaque Matrices[J]. Food Chem., 2015,166:283-286. doi: 10.1016/j.foodchem.2014.06.017

    14. [14]

      Xu W N, Dai S G, Wang X, He X M, Wang M J, Xi Y, Hu C G. Nanorod-Aggregated Flower-like CuO Grown on a Carbon Fiber Fabric for a Super High Sensitive Non-enzymatic Glucose Sensor[J]. J. Mater. Chem. B, 2015,3:5777-5785. doi: 10.1039/C5TB00592B

    15. [15]

      Archana V, Xia Y, Fang R Y, Gnana Kumar G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors[J]. ACS Sustainable Chem. Eng., 2019,7(7):6707-6719. doi: 10.1021/acssuschemeng.8b05980

    16. [16]

      Chandran G T, Li X W, Ogata A, Penner R M. Electrically Transduced Sensors Based on Nanomaterials (2012—2016)[J]. Anal. Chem., 2017,89(1):249-275. doi: 10.1021/acs.analchem.6b04687

    17. [17]

      Hmadeh M, Lu Z, Liu Z, Gandara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, Perre E, Ozolins V, Suenaga K, Duan X F, Dunn B, Yamamto Y, Terasaki O, Yaghi O M. New Porous Crystals of Extended Metal-Catecholates[J]. Chem. Mater., 2012,24(18):3511-3513. doi: 10.1021/cm301194a

    18. [18]

      Duan X X, Liu K L, Xu Y, Yuan M T, Gao T, Wang J. Nonenzymatic Electrochemical Glucose Biosensor Constructed by NiCo2O4@Ppy Nanowires on Nickel Foam Substrate[J]. Sens. Actuators B, 2019,292:121-128. doi: 10.1016/j.snb.2019.04.107

    19. [19]

      Cui D D, Su L, Li M J, Li C P, Xu S, Qian L R, Yang B H. Non-enzymatic Glucose Sensor Based on Micro-/nanostructured Cu/Ni Deposited on Graphene Sheets[J]. J. Electroanal. Chem., 2019,838:154-162. doi: 10.1016/j.jelechem.2019.03.005

    20. [20]

      Xu J W, Xu N, Zhang X M, Xu P, Gao B, Peng X, Mooni S, Li Y, Fu J J, Huo K F. Phase Separation Induced Rhizobia-like Ni Nanoparticles and TiO2 Nanowires Composite Arrays for Enzyme-Free Glucose Sensor[J]. Sens. Actuators B, 2017,244:38-46. doi: 10.1016/j.snb.2016.12.088

    21. [21]

      Qin L R, He L Z, Zhao J W, Zhao B L, Yin Y Y, Yang Y. Synthesis of Ni/Au Multilayer Nanowire Arrays for Ultrasensitive Non-enzymatic Sensing of Glucose[J]. Sens. Actuators B, 2017,240:779-784. doi: 10.1016/j.snb.2016.09.041

    22. [22]

      Wang X X, Jian H M, Xiao Q, Huang S P. Ammonium Nickel Phosphate on Nickel Foam with a Ni3+-Rich Surface for Ultrasensitive Nonenzymatic Glucose Sensors[J]. Appl. Surf. Sci., 2018,459:40-47.

    23. [23]

      Zhang L, Yang C L, Zhao G Y, Mu J S, Wang Y. Self-Supported Porous CoOOH Nanosheet Arrays as a Non-enzymatic Glucose Sensor with Good Reproducibility[J]. Sens. Actuators B, 2015,210:190-196. doi: 10.1016/j.snb.2014.12.113

    24. [24]

      LIU S Q, SHI X H, HUANG K L, LI X G, LI Y J, WU X W. The Mechanism of Vanadium(Ⅳ/Ⅴ) Couple Redox Reaction at Carbon Paper Electrode[J]. Chinese J. Inorg. Chem., 2009,25(3):417-421.  

    25. [25]

      National Standard for Food Safety: Determination of Fructose, Glucose, Sucrose, Maltose and Lactose in Food: GB 5009.8-2016. 2016.

    26. [26]

      Baghayeri M, Zare E N, Lakouraj M M. Novel Superparamagnetic PFu@Fe3O4 Conductive Nanocomposite as a Suitable Host for Hemoglobin Immobilization[J]. Sens. Actuators B, 2014,202:1200-1208. doi: 10.1016/j.snb.2014.06.019

    27. [27]

      Zhu W X, Wang J, Zhang W T, Hu N, Wang J, Huang L J, Wang R, Suo Y R, Wang J L. Monolithic Copper Selenide Submicron Particulate Film/Copper Foam Anode Catalyst for Ultrasensitive Electrochemical Glucose Sensing in Human Blood Serum[J]. J. Mater. Chem. B, 2018,6(5):718-724.  

    28. [28]

      Yu Z Y, Li H J, Zhang X M, Liu N K, Tan W L, Zhang X, Zhang L L. Facile Synthesis of NiCo2O4 @Polyaniline Core-Shell Nanocomposite for Sensitive Determination of Glucose[J]. Biosens. Bioelectron., 2016,75:161-165.  

    29. [29]

      Richards J A, Whitson P E, Evans D H. Electrochemical Oxidation of 2, 4, 6-Tri-tert-butylphenol[J]. J. Electroanal. Chem. Interfacial Electrochem., 1975,63(3):311-327.  

    30. [30]

      Deng Y J, Zheng H N, Yi X M, Shao C N, Xiang B, Wang S Y, Zhao Z D, Zhang X H, Hui G H. Paralytic Shellfish Poisoning Toxin Detection Based on Cell-Based Sensor and Non-linear Signal Processing Model[J]. International Journal of Food Properties, 2019,22(1):890-897.  

    31. [31]

      Figiela M, Wysokowski M, Galinski M, Jesionowski T, Stepniak I. Synthesis and Characterization of Novel Copper Oxide-Chitosan Nanocomposites for Non-enzymatic Glucose Sensing[J]. Sens. Actuators B, 2018,272:296-307.  

    32. [32]

      Shamsipur M, Najafi M, Hosseini M M. Highly Improved Electrooxidation of Glucose at a Nickel(Ⅱ) Oxide/Multi-walled Carbon Nanotube Modified Glassy Carbon Electrode[J]. Bioelectrochemistry, 2010,77(2):120-124.  

    33. [33]

      Rajendran S, Manoj D, Raju K, Dionysiou D D, Naushad M, Gracia F, Cornejo L, Graccia-Pinilla M A, Ahamad T. Influence of Mesoporous Defect Induced Mixed-Valent NiO (Ni2+/Ni3+)-TiO2 Nanocomposite for Non-enzymatic Glucose Biosensors[J]. Sens. Actuators B, 2018,264:27-37.  

    34. [34]

      Mohamed Azharudeena A, Karthigaa R, Rajarajan M, Suganthi A. Fabrication, Characterization of Polyaniline Intercalated NiO Nanocomposites and Application in the Development of Non-enzymatic Glucose Biosensor[J]. Arabian J. Chem., 2020,13(2):4053-4064.  

    35. [35]

      Zhu J J, Yin H Y, Gong J Y, Al-Furjan M S H, Nie Q L. In Situ Growth of Ni/NiO on N-Doped Carbon Spheres with Excellent Electrocatalytic Performance for Non-enzymatic Glucose Detection[J]. J. Alloys Compd., 2018,748:145-153.  

    36. [36]

      Wang F Y, Feng Y L, He S, Wang L Y, Guo M L, Cao Y J, Wang Y M, Yu Y. Nickel Nanoparticles-Loaded Three-Dimensional Porous Magnetic Graphene-like Material for Non-enzymatic Glucose Sensing[J]. Microchem. J., 2020,155104748.  

  • 加载中
    1. [1]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    2. [2]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    5. [5]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    6. [6]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    7. [7]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    10. [10]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    13. [13]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047

    15. [15]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    20. [20]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

Metrics
  • PDF Downloads(2)
  • Abstract views(1277)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return