Citation: Lu ZHAO, Tong-Dan CHEN, Han-Ye WANG, Chen-Xi LI, Jiang LI. Mn-Based Coordination Polymer: Facile Synthesis, Structure and Application in Glucose Electrochemical Sensing[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2101-2112. doi: 10.11862/CJIC.2021.237 shu

Mn-Based Coordination Polymer: Facile Synthesis, Structure and Application in Glucose Electrochemical Sensing

  • Corresponding author: Jiang LI, lijiang@chd.edu.cn
  • Received Date: 8 June 2021
    Revised Date: 31 August 2021

Figures(7)

  • Utilizing the rigid 6-(3-pyridyl) isophthalic acid (H2PIAD) linker, one Mn(Ⅱ)-based coordination polymer {[Mn(PIAD)(DMF)]·H2O}n (1) was prepared firstly. In order to improve the electrocatalytic activity of glucose sensing, a composite material (Ag@1) was prepared by the strategy of post synthesis of Ag nanoparticles (NPs). The electrocatalytic performance of the glassy carbon electrode (GCE) modified by Ag@1 was evaluated by chronoamperometry method at the optimized application potential, and coordination polymer 1 provided a fixed substrate for the uniform distribution of Ag NPs on its surface. Ag@1 sensor can maximize the electrocatalytic synergistic effect of the combination of Ag and 1 on glucose oxidation. The results reveal that modified GCE by Ag@1 had good performance for the detection of glucose with low detection limit (6.36 μmol·L-1), good selectivity and sensitivity (166.71 μA·L·mmol-1·cm-2).
  • 加载中
    1. [1]

      Shibayama T, Tanha S, Abe Y, Haginoya H, Rajab A, Hidaka K. The Role of Illness Schemata in Self-Care Behaviors and Glycemic Control among Patients with Type 2 Diabetes in Iran[J]. Prim. Care Diabetes, 2019,13(5):474-480. doi: 10.1016/j.pcd.2019.03.002

    2. [2]

      Ferri S, Kojima K, Sode K. Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird's Eye View of Glucose Sensing Enzymes[J]. J. Diabetes Sci. Technol., 2011,5(5):1068-1076. doi: 10.1177/193229681100500507

    3. [3]

      Vashist S K, Zheng D, Al-Rubeaan K, Luong J H T, Sheu F S. Technology behind Commercial Devices for Blood Glucose Monitoring in Diabetes Management: A Review[J]. Anal. Chim. Acta, 2011,703(2):124-136. doi: 10.1016/j.aca.2011.07.024

    4. [4]

      Zhang Y, Zheng D H, Liu S M, Qin S Y, Sun X H, Wang Z F, Qin C L, Li Y Y, Zhou J. Flexible Porous Ni(OH)2 Nanopetals Sandwiches for Wearable Non-enzyme Glucose Sensors[J]. Appl. Surf. Sci., 2021,552149529. doi: 10.1016/j.apsusc.2021.149529

    5. [5]

      Zhang J, Sun Y D, Li X C, Xu J S. Fabrication of NiCo2O4 Nanobelt by a Chemical Co-precipitation Method for Non-enzymatic Glucose Electrochemical Sensor Application[J]. J. Alloys Compd., 2020,831154796. doi: 10.1016/j.jallcom.2020.154796

    6. [6]

      Li W W, Qi H, Wang B G, Wang Q Y, Wei S T, Zhang X L, Wang Y, Zhang L, Cui X Q. Ultrathin NiCo2O4 Nanowalls Supported on a 3D Nanoporous Gold Coated Needle for Non-enzymatic Amperometric Sensing of Glucose[J]. Mikrochim. Acta, 2018,185(2)124. doi: 10.1007/s00604-017-2663-8

    7. [7]

      Lee S, Lee J, Park S, Boo H, Kim H C, Chung T D. Disposable Non-enzymatic Blood Glucose Sensing Strip Based on Nanoporous Platinum Particles[J]. Appl. Mater. Today, 2018,10:24-29. doi: 10.1016/j.apmt.2017.11.009

    8. [8]

      Liu B B, Wang X Y, Liu H Q, Zhai Y Y, Li L, Wen H R. 2D MOF with Electrochemical Exfoliated Graphene for Nonenzymatic Glucose Sensing: Central Metal Sites and Oxidation Potentials[J]. Anal. Chim. Acta, 2020,1122:9-19. doi: 10.1016/j.aca.2020.04.075

    9. [9]

      Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y. Bimetallic Pt-Au Nanocatalysts Electrochemically Deposited on Boron-Doped Diamond Electrodes for Nonenzymatic Glucose Detection[J]. Biosens. Bioelectron., 2017,98:9876-9882.  

    10. [10]

      Hwang D W, Lee S, Seo M, Dong C T. Recent Advances in Electro-chemical Non-enzymatic Glucose Sensors-A Review[J]. Anal. Chim. Acta, 2018,1033:1-34. doi: 10.1016/j.aca.2018.05.051

    11. [11]

      Liu T J, Guo Y Q, Zhang Z F, Miao Z C, Zhang X Y, Su Z Q. Fabrication of Hollow CuO/PANI Hybrid Nanofibers for Non-enzymatic Electro-chemical Detection of H2O2 and Glucose[J]. Sens. Actuators B, 2019,286:370-376. doi: 10.1016/j.snb.2019.02.006

    12. [12]

      Hu M L, Abbasi-Azad M, Habibi B, Rouhani F, Moghanni-Bavil-Olyaei H, Liu K G, Morsali A. Electrochemical Applications of Ferrocene-Based Coordination Polymers[J]. ChemPlusChem, 2020,85(11):2397-2418. doi: 10.1002/cplu.202000584

    13. [13]

      Liu G C, Zhao J, Liang S, Li Y, Chang Z H, Wang X L, Chen B K. Ten Polytorsional-Amide-Induced Helical-Based Coordination Polymers with Difunctional Electrochemical Activities[J]. CrystEngComm, 2021,23(5):1263-1271. doi: 10.1039/D0CE01754J

    14. [14]

      Zhao Q, Li S H, Chai R L, Ren X, Zhang C. Two-Dimensional Conductive Metal-Organic Frameworks Based on Truxene[J]. ACS Appl. Mater. Interfaces, 2020,12(6):7504-7509. doi: 10.1021/acsami.9b23416

    15. [15]

      Yang M L, Rong S, Wang X M, Ma H Y, Pang H J, Tan L C, Jiang Y X, Gao K Q. Preparation and Application of Keggin Polyoxometalate-Based 3D Coordination Polymer Materials as Supercapacitors and Amperometric Sensors[J]. ChemNanoMat, 2021,7(3):299-306. doi: 10.1002/cnma.202000654

    16. [16]

      Wang Y, Wang L, Huang W, Zhang T, Hu X Y, Perman J A, Ma S Q. A Metal-Organic Framework and Conducting Polymer Based Electro-chemical Sensor for High Performance Cadmium Ion Detection[J]. J. Mater. Chem. A, 2017,5(18):8385-8393. doi: 10.1039/C7TA01066D

    17. [17]

      Tang L P, Yang S, Liu D, Wang C, Ge Y Q, Tang L M, Zhou R L, Zhang H. Two-Dimensional Porous Coordination Polymers and Nanocomposites for Electrocatalysis and Electrically Conductive Applications[J]. J. Mater. Chem. A, 2020,8(29):14356-14383. doi: 10.1039/D0TA03356A

    18. [18]

      Zhang X, Zhao K X, Lin S Y, Xu Z K, Li L. Ambient Synthesis of Iron-Nickel Amorphous Coordination Polymer Nanosheet Arrays for Highly Efficient Oxygen Evolution Electrocatalysis[J]. J. Alloys Compd., 2021,868159218. doi: 10.1016/j.jallcom.2021.159218

    19. [19]

      Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2009,38(5):1330-1352. doi: 10.1039/b802352m

    20. [20]

      Ling Y Y, Chen H M, Zhou J J, Tao K S, Zhao H, Yu X B, Han L. Metal-Organosulfide Coordination Polymer Nanosheet Array as a Battery-Type Electrode for an Asymmetric Supercapacitor[J]. Inorg. Chem., 2020,59(10):7360-7369. doi: 10.1021/acs.inorgchem.0c00916

    21. [21]

      Fu D C, Chen Z Y, Yu C Y, Song X L, Zhong W B. Bimetallic-Organic Coordination Polymers to Prepare N-Doped Hierarchical Porous Carbon for High Performance Supercapacitors[J]. Prog. Nat. Sci., 2019,29(5):495-503. doi: 10.1016/j.pnsc.2019.08.014

    22. [22]

      Wang G N, Chen T T, Gómez-García C, Zhang F, Zhang M Y, Ma H Y, Pang H J, Wang X M, Tan L C. A High-Capacity Negative Electrode for Asymmetric Supercapacitors Based on a PMo12 Coordination Polymer with Novel Water-Assisted Proton Channels[J]. Small, 2020,16(29)2001626. doi: 10.1002/smll.202001626

    23. [23]

      Kadirov M K, Minzanova S T, Nizameev I R, Mironova L G, Gilmutdinov I F, Khrizanforov M N, Kholin K V, Khamatgalimov A R, Semyonov V A, Morozov V I, Kadirov D M, Mukhametzyanov A R, Budnikova Y H, Sinyashin O G. Correction: A Nickel-Based Pectin Coordination Polymer as an Oxygen Reduction Reaction Catalyst for Proton-Exchange Membrane Fuel Cells[J]. Inorg. Chem. Front., 2019,6(1):326-326. doi: 10.1039/C8QI90050G

    24. [24]

      LI J, HAN S, CHEN T J, GOU Z X, ZHANG Q, NIE X S, CAO H R. Two Homologous Metal-Organic Frameworks Based on Zn(Ⅱ) and Cd (Ⅱ): Luminescent Sensors for Nitro Aromatic Compounds in Solution and Vapor Medium[J]. Chinese J. Inorg. Chem., 2019,35(10):1843-1852. doi: 10.11862/CJIC.2019.204 

    25. [25]

      Shahhoseini L, Mohammadi R, Ghanbari B, Shahrokhian S. Ni(Ⅱ) 1D-Coordination Polymer/C60-Modified Glassy Carbon Electrode as a Highly Sensitive Non-enzymatic Glucose Electrochemical Sensor[J]. Appl. Surf. Sci., 2019,478:361-372. doi: 10.1016/j.apsusc.2019.01.240

    26. [26]

      Liu H, Wang Y S, Qin Z S, Liu D, Xu H, Dong H L, Hu W P. Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications[J]. J. Phys. Chem. Lett., 2021,12(6):1612-1630. doi: 10.1021/acs.jpclett.0c02988

    27. [27]

      Mo G Q, Zheng X R, Ye N B, Ruan Z X. Nitrogen-Doped Carbon Dodecahedron Embedded with Cobalt Nanoparticles for the Direct Electro-oxidation of Glucose and Efficient Nonenzymatic Glucose Sensing[J]. Talanta, 2020,225121954.  

    28. [28]

      Li M, Dong P, Zhang Y J. Facile Design and Synthesis of Ultrafine FeCo Nanocrystallines Coupled with Porous Carbon Nanosheets as High Efficiency Non-enzymatic Glucose Sensor[J]. J. Alloys Compd., 2019,810151927. doi: 10.1016/j.jallcom.2019.151927

    29. [29]

      Qian C C, Han K Y, Weng W M, Zhang Y J, Ma W, Song Y H, Wang L. Electrochemical Glucose Sensor Based on Microporous Carbon/CuO@Carbon/AuNPs Integrated Electrode[J]. ChemistrySelect, 2019,4(19):5633-5640. doi: 10.1002/slct.201900245

    30. [30]

      Li W W, Lv S, Wang Y, Zhang L, Cui X Q. Nanoporous Gold Induced Vertically Standing 2D NiCo Bimetal-Organic Framework Nanosheets for Non-enzymatic Glucose Biosensing[J]. Sens. Actuators B, 2018,281:652-658.  

    31. [31]

      Li G F, Chen D, Chen Y J, Dong L F. MOF Ni-BTC Derived Ni/C/Graphene Composite for Highly Sensitive Non-enzymatic Electro-chemical Glucose Detection[J]. ECS J. Solid State Sci. Technol., 2020,9(12)121014. doi: 10.1149/2162-8777/abd51c

    32. [32]

      Shi L B, Zhu X, Liu T T, Zhao H L, Lan M B. Encapsulating Cu Nanoparticles into Metal-Organic Frameworks for Nonenzymatic Glucose Sensing[J]. Sens. Actuators B, 2016,227:583-590. doi: 10.1016/j.snb.2015.12.092

    33. [33]

      Zheng W R, Hu L S, Lee L Y S, Wong K Y. Copper Nanoparticles/Polyaniline/Graphene Composite as a Highly Sensitive Electrochemical Glucose Sensor[J]. J. Electroanal. Chem., 2016,781:155-160. doi: 10.1016/j.jelechem.2016.08.004

    34. [34]

      Shishegari N, Sabahi A, Manteghi F, Ghaffarinejad A, Tehrani Z. Non-enzymatic Sensor Based on Nitrogen-Doped Graphene Modified with Pd Nano-Particles and NiAl Layered Double Hydroxide for Glucose Determination in Blood[J]. J. Electroanal. Chem., 2020,871114285. doi: 10.1016/j.jelechem.2020.114285

    35. [35]

      Shabnam L, Faisal S N, Roy A K, Haque E, Minett A I, Gomes V G. Doped Graphene/Cu Nanocomposite: A High Sensitivity Nonenzymatic Glucose Sensor for Food[J]. Food Chem., 2017,221:751-759. doi: 10.1016/j.foodchem.2016.11.107

    36. [36]

      Khosroshahi Z, Karimzadeh F, Kharaziha M, Allafchian A. A Non-enzymatic Sensor Based on Three-Dimensional Graphene Foam Decorated with Cu-xCu2O Nanoparticles for Electrochemical Detection of Glucose and Its Application in Human Serum[J]. Mater. Sci. Eng. C, 2020,108110216. doi: 10.1016/j.msec.2019.110216

    37. [37]

      Chang G, Shu H H, Huang Q W, Oyama M, Ji K, Liu X, He Y B. Synthesis of Highly Dispersed Pt Nanoclusters Anchored Graphene Composites and Their Application for Non-enzymatic Glucose Sensing[J]. Electrochim. Acta, 2015,157:149-157. doi: 10.1016/j.electacta.2015.01.085

    38. [38]

      Chen C Y, Shi M, Xue M W, Hu Y J. Synthesis of Nickel(Ⅱ) Coordination Polymers and Conversion into Porous NiO Nanorods with Excellent Electrocatalytic Performance for Glucose Detection[J]. RSC Adv., 2017,7(36):22208-22214. doi: 10.1039/C7RA00715A

    39. [39]

      Dang W J, Sun Y M, Jiao H, Xu L, Lin M. AuNPs-NH2/Cu-MOF Modified Glassy Carbon Electrode as Enzyme-Free Electrochemical Sensor Detecting H2O2[J]. J. Electroanal. Chem., 2020,856113592. doi: 10.1016/j.jelechem.2019.113592

    40. [40]

      Razmi H, Shirdel H, Rezaei R M. NiO Nanoparticles Electrodeposited on Reduced GO-CuO Nanocomposite Bulk Modified CCE as a Sensitive Glucose Sensor[J]. Micro Nano Lett., 2017,12(4):217-222. doi: 10.1049/mnl.2016.0566

    41. [41]

      Liu Y, Shi W J, Lu Y K, Liu G, Hou L, Wang Y Y. Nonenzymatic Glucose Sensing and Magnetic Property Based on the Composite Formed by Encapsulating Ag Nanoparticles in Cluster-Based Co-MOF[J]. Inorg. Chem., 2019,58(24):16743-16751. doi: 10.1021/acs.inorgchem.9b02889

    42. [42]

      Jiang H L, Akita T, Ishida T, Haruta M, Xu Q. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework[J]. J. Am. Chem. Soc., 2011,133(5):1304-1306. doi: 10.1021/ja1099006

    43. [43]

      Meng W, Wen Y Y, Dai L, He Z X, Wang L. A Novel Electrochemical Sensor for Glucose Detection Based on Ag@ZIF-67 Nanocomposite[J]. Sens. Actuators B, 2018,260:852-860. doi: 10.1016/j.snb.2018.01.109

    44. [44]

      Kubota R, Takabe T G, Arima K, Taniguchi H, Asayama S, Kawakami H. New Class of Artificial Enzyme Composed of Mn-Porphyrin, Imidazole, and Cucurbit[10] uril toward Use as a Therapeutic Antioxidant[J]. J. Mater. Chem. B, 2018,6(43):7050-7059. doi: 10.1039/C8TB01204K

    45. [45]

      Sebarchievici L, Lascu A, Fagadar-Cosma G, Palade A, Fringu L, Birdeanu M, Taranu B, Fagadar-Cosma E. Optical and Electrochemical-Mediated Detection of Ascorbic Acid Using Manganese Porphyrin and Its Gold Hybrids[J]. C.R. Chim., 2018,21(3/4):327-338.  

    46. [46]

      Chen Y L, Huang W, Wang C D, Zhai X Y, Zhang T, Wang Y, Hu X Y. Direct Growth of Poly-Glutamic Acid Film on Peroxidase Mimicking PCN-222(Mn) for Constructing a Novel Sensitive Nonenzymatic Electrochemical Hydrogen Peroxide Biosensor[J]. ACS Sustainable Chem. Eng., 2020,8(35):13226-13235. doi: 10.1021/acssuschemeng.0c03000

    47. [47]

      Zahan M, Podder J. Role of Fe Doping on Structural and Electrical Properties of MnO2 Nanostructured Thin Films for Glucose Sensing Performance[J]. Mater. Sci. Semicond. Process., 2020,117105109. doi: 10.1016/j.mssp.2020.105109

    48. [48]

      Qu L L, Zhao L, Chen T D, Li J, Nie X S, Li R Y, Sun C J. Two Novel Coordination Polymers and Their Hybrid Materials with Ag Nanoparticles for Non-enzymatic Detection of Glucose[J]. J. Solid State Chem., 2021,297122086. doi: 10.1016/j.jssc.2021.122086

    49. [49]

      Dong C Q, Zhong H, Kou T Y, Frenzel J, Eggeler G, Zhang Z H. Three-Dimensional Cu Foam-Supported Single Crystalline Mesoporous Cu2O Nanothorn Arrays for Ultra-Highly Sensitive and Efficient Nonenzymatic Detection of Glucose[J]. ACS Appl. Mater. Interfaces, 2015,7(36):20215-20223. doi: 10.1021/acsami.5b05738

    50. [50]

      Lee S H, Yang J, Han Y J, Cho M, Lee Y. Rapid and Highly Sensitive MnOx Nanorods Array Platform for a Glucose Analysis[J]. Sens. Actuators B, 2015,218:137-144. doi: 10.1016/j.snb.2015.05.005

    51. [51]

      Cao M M, Wang H, Kannan P, Ji S, Wang X P, Zhao Q, Linkov V, Wang R F. Highly Efficient Non-enzymatic Glucose Sensor Based on Cu xS Hollow Nanospheres[J]. Appl. Surf. Sci., 2019,492:407-416. doi: 10.1016/j.apsusc.2019.06.248

    52. [52]

      Zhou X, Gu X T, Chen Z Y, Wu Y X, Xu W, Bao J. A Novel and Sensitive Cu2ZnSnS4 Quantum Dot-Based Non-enzymatic Glucose Sensor[J]. Sens. Actuators B, 2021,329129117. doi: 10.1016/j.snb.2020.129117

    53. [53]

      Si P, Dong X C, Chen P, Kim D H. A Hierarchically Structured Composite of Mn3O4/3D Graphene Foam for Flexible Nonenzymatic Biosensors[J]. J. Mater. Chem. B, 2013,1:110-115. doi: 10.1039/C2TB00073C

    54. [54]

      Arif D, Hussain Z, Sohail M, Liaqat M A, Khan M A, Noor T. A Non-enzymatic Electrochemical Sensor for Glucose Detection Based on Ag@TiO2@Metal-Organic Framework (ZIF-67) Nanocomposite[J]. Front. Chem., 2020,8573510. doi: 10.3389/fchem.2020.573510

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    7. [7]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    12. [12]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    13. [13]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    14. [14]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    15. [15]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    16. [16]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    17. [17]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    18. [18]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    19. [19]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(4)
  • Abstract views(533)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return