Citation: Su-Zhuo-Cheng LIANG, Guo-Xun JI, Xin-Li SUN, Guo-Dong LI, Shi-Tong ZHANG. Theoretical Studies on Mechanism of 15-Crown-5 Coordinating with Li+ Regulated by Si Doping[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2037-2046. doi: 10.11862/CJIC.2021.236 shu

Theoretical Studies on Mechanism of 15-Crown-5 Coordinating with Li+ Regulated by Si Doping

Figures(2)

  • This study mainly focused on the effect of substituting-CH2-CH2-with-SiMe2-SiMe2-or-CH2-SiMe2-on the coordination ability of 15-crown-5 with Li+ based on density functional theory calculations. The results show that Si doping can not only lead to increased size of crown ethers, but can also effectively regulate the coordination ability of crown ethers with Li+ by tuning the doping level and position. Atoms in molecules (AIM) analysis of electron density and symmetry-adapted perturbation theory (SAPT) energy decomposition analysis indicate that the interactions between the intrinsic/Si-doped crown ethers and Li+ are essentially ion-dipole interactions, accompanied by slight orbital polarization and electron transfer. Since the electrons of Si are polarized more easily by O and Li+ than those of carbon atoms, Si doping can thus enhance the electrostatic and induction interactions between crown ethers and Li+. However, natural population analysis demonstrates that if the Si doping introduces Si-O-Si structures into the crown ethers, it could prevent O from fully polarizing the electrons of Si, and results in a closer distance between positively charged Si and Li+, thereby impeding the coordination of crown ethers with Li+.
  • 加载中
    1. [1]

      Dong G C, Duan K F, Zhang Q, Liu Z Z. A New Colorimetric and Fluorescent Chemosensor Based on Schiff Base-Phenyl-Crown Ether for Selective Detection of Al3+ and Fe3+[J]. Inorg. Chim. Acta, 2019,487:322-330. doi: 10.1016/j.ica.2018.12.036

    2. [2]

      Sun Y, Zhu M Y, Yao Y L, Wang H W, Tong B H, Zhao Z. A Novel Approach for the Selective Extraction of Li+ from the Leaching Solution of Spent Lithium-Ion Batteries Using Benzo-15-Crown-5 Ether as Extractant[J]. Sep. Purif. Technol., 2020,237:116325-116332. doi: 10.1016/j.seppur.2019.116325

    3. [3]

      LI R X, ZHONG W B, XIE L H, XIE Y B, LI J R. Recent Advances in Adsorptive Removal of Cr(Ⅵ) Ions by Metal-Organic Frameworks[J]. Chinese J. Inorg. Chem., 2021,37(3):385-400.  

    4. [4]

      TIAN H, ZHANG M L, WANG L S, TONG B H, ZHAO Z. Synthesis of 4, 13-Dithio Benzene and-18-Crown-6 and Its Selective Extractability on Ag+[J]. Chem. J. Chinese Universities, 2018,39(6):1191-1196.  

    5. [5]

      MIAO Q, HUANG H, HUANG X B, XU Y, CHENG Y X. A Fluorescent Chemosensor for Metal Ions Based on the Conjugated Polymer Containing 2, 3-Naphtho-18-Crown-6[J]. Chinese J. Inorg. Chem., 2009,25(12):2182-2188. doi: 10.3321/j.issn:1001-4861.2009.12.018

    6. [6]

      Ratch J S, Chivers T. Silicon Analogues of Crown Ethers and Cryptands: A New Chapter in Host-Guest Chemistry? Angew[J]. Chem. Int. Ed., 2007,46(25):4610-4613. doi: 10.1002/anie.200701822

    7. [7]

      Ouchi M, Inoue Y, Kanzaki T, Hakushi T. Ring-Contracted Crown Ethers: 14-Crown-5, 17-Crown-6, and Their Sila-Analogues[J]. Drastic Decrease in Cation-Binding Ability. Bull. Chem. Soc. Jpn., 1984,57(3):887-888.

    8. [8]

      Reuter K, Thiele G, Hafner T, Uhlig F, von Hänisch C. Synthesis and Coordination Ability of a Partially Silicon Based Crown Ether[J]. Chem. Commun., 2016,52(90):13265-13268. doi: 10.1039/C6CC07520G

    9. [9]

      Reuter K, Buchner M R, Thiele G, von Hänisch C. Stable Alkali-Metal Complexes of Hybrid Disila-Crown Ethers[J]. Inorg. Chem., 2016,55(9):4441-4447. doi: 10.1021/acs.inorgchem.6b00267

    10. [10]

      Dankert F, von Hänisch C. Insights into the Coordination Ability of Siloxanes Employing Partially Silicon Based Crown Ethers: A Comparative Analysis of s-Block Metal Complexes[J]. Inorg. Chem., 2019,58(5):3518-3526. doi: 10.1021/acs.inorgchem.9b00086

    11. [11]

      Dankert F, Donsbach C, Rienmüller J, Richter R M, von Hänisch C. Alkaline Earth Metal Template (Cross-) Coupling Reactions with Hybrid Disila-Crown Ether Analogues[J]. Chem. Eur. J., 2019,25(69):15934-15943. doi: 10.1002/chem.201904209

    12. [12]

      ZHAO Y, AO Y Y, CHEN J, SONG H T, HUANG W, PENG J. Density Functional Theory Studies of the Structures and Thermodynamic Parameters of Li+-Crown Ether Complexes[J]. Acta Phys.-Chem. Sin., 2016,32(7):1681-1690.

    13. [13]

      Nametkin N S, Islamov T K, Gusel'nikov L E, Sobtsov A A, Vdovin V M. Gas-Phase Thermal Conversion in a Series of Cyclocarbosiloxanes[J]. Russ. Chem. Bull., 1971,20(1):76-79. doi: 10.1007/BF00849323

    14. [14]

      Nametkin N S, Islamov T Kh, Gusel'nikov L E, Vdovin V M. Cyclocarbosiloxanes[J]. Russ. Chem. Rev., 1972,41(2):111-130. doi: 10.1070/RC1972v041n02ABEH002056

    15. [15]

      Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J. Phys. Chem., 1994,98(45):11623-1627. doi: 10.1021/j100096a001

    16. [16]

      Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory[J]. J. Comput. Chem., 2011,32(7):1456-1465. doi: 10.1002/jcc.21759

    17. [17]

      Weigend F, Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy[J]. Phys. Chem. Chem. Phys., 2005,7(18):3297-3305. doi: 10.1039/b508541a

    18. [18]

      Weigend F. Accurate Coulomb-Fitting Basis Sets for H to Rn[J]. Phys. Chem. Chem. Phys., 2006,8(9):1057-1065. doi: 10.1039/b515623h

    19. [19]

      Reed A E, Weinstock R B, Weinhold F. Natural Population Analysis[J]. J. Chem. Phys., 1985,83(2):735-746. doi: 10.1063/1.449486

    20. [20]

      Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33(5):580-592. doi: 10.1002/jcc.22885

    21. [21]

      Bader R W F. Atoms in Molecules: A Quantum Theory[J]. New York: Oxford University Press, 1990:16-22.  

    22. [22]

      Boys S F, Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies-Some Procedures with Reduced Errors[J]. Mol. Phys., 1970,19(4):553-556. doi: 10.1080/00268977000101561

    23. [23]

      Marenich A V, Cramer C J, Truhlar D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions[J]. J. Phys. Chem. B, 2009,113(18):6378-6396. doi: 10.1021/jp810292n

    24. [24]

      Zhao Y, Schultz N E, Truhlar D G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions[J]. J. Chem. Theory Comput., 2006,2(2):364-382. doi: 10.1021/ct0502763

    25. [25]

      Petersson G A, Bennett A, Tensfeldt T G, Al-Laham M A, Shirley W A, Mantzaris J. A Complete Basis Set Model Chemistry. Ⅰ. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements[J]. J. Chem. Phys., 1988,89(4):2193-2218.

    26. [26]

      Petersson G A, Al-Laham M A. A Complete Basis Set Model Chemistry. Ⅱ. Open-Shell Systems and the Total Energies of the First-Row Atoms[J]. J. Chem. Phys., 1991,94(9):6081-6090.

    27. [27]

      Ho J, Klamt A, Coote M L. Comment on the Correct Use of Continuum Solvent Models[J]. J. Phys. Chem. A, 2010,114(51):13442-13444. doi: 10.1021/jp107136j

    28. [28]

      Parrish R M, Burns L A, Smith D G A, Simmonett A C, DePrince A E, Hohenstein E G, Bozkaya U, Sokolov A Y, Remigio R D, Richard R M, Gonthier J F, James A M, McAlexander H R, Kumar A, Saitow M, Wang X, Pritchard B P, Verma P, Schaefer H F, Patkowski K, King R A, Valeev E F, Evangelista F A, Turney J M, Crawford T D, Sherrill C D. Psi41. 1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability[J]. J. Chem. Theory Comput., 2017,13(7):3185-3197.

    29. [29]

      Jeziorski B, Moszynski R, Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes[J]. Chem. Rev., 1994,94(7):1887-1930. doi: 10.1021/cr00031a008

    30. [30]

      Dunning T H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. Ⅰ. The Atoms Boron through Neon and Hydrogen[J]. J. Chem. Phys., 1989,90(2):1007-1023.  

    31. [31]

      Dunning T H, Peterson K A, Wilson A K. Gaussian Basis Sets for Use in Correlated Molecular Calculations. Ⅹ. The Atoms Aluminum through Argon Revisited[J]. J. Chem. Phys., 2001,114(21):9244-9253.  

    32. [32]

      Feller D. The Role of Databases in Support of Computational Chemistry Calculations[J]. J. Comput. Chem., 1996,17(13):1571-1586. doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P

    33. [33]

      Papajak E, Truhlar D G. Convergent Partially Augmented Basis Sets for Post-Hartree-Fock Calculations of Molecular Properties and Reaction Barrier Heights[J]. J. Chem. Theory Comput., 2011,7(1):10-18. doi: 10.1021/ct1005533

    34. [34]

      Schuchardt K L, Didier B T, Elsethagen T, Sun L S, Gurumoorthi V, Chase J, Li J, Windus T L. Basis Set Exchange: A Community Database for Computational Sciences[J]. J. Chem. Inf. Model., 2007,47(3):1045-1052. doi: 10.1021/ci600510j

    35. [35]

      Woon D E, Dunning T H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. Ⅲ. The Atoms Aluminum through Argon[J]. J. Chem. Phys., 1993,98(2):1358-1371.  

    36. [36]

      Parker T M, Burns L A, Parrish R M, Ryno A G, Sherrill C D. Levels of Symmetry Adapted Perturbation Theory (SAPT). Ⅰ. Efficiency and Performance for Interaction Energies[J]. J. Chem. Phys., 2014,140(9):094106-1--094106-16.  

    37. [37]

      Boulatov R, Du B, Meyers E A, Shore S G. Two Novel Lithium-15-Crown-5 Complexes: An Extended LiCl Chain Stabilized by Crown Ether and a Dimeric Complex Stabilized by Hydrogen Bonding with Water[J]. Inorg. Chem., 1999,38(20):4554-4558. doi: 10.1021/ic9904790

    38. [38]

      Cordero B, Gómez V, Platero-Prats A E, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S. Covalent Radii Revisited[J]. Dalton Trans., 2008(21):2832-2838. doi: 10.1039/b801115j

    39. [39]

      Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Crystallogr. Sect. A, 1976,A32(5):751-767.  

    40. [40]

      Guo X J, Zhu Y D, Wei M J, Wu X M, Lü L H, Lu X H. Theoretical Study of Hydration Effects on the Selectivity of 18-Crown-6 Between K+ and Na+[J]. Chinese J. Chem. Eng., 2011,19(2):212-216. doi: 10.1016/S1004-9541(11)60156-0

    41. [41]

      Cremer D, Kraka E. A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy[J]. Croat. Chem. Acta, 1985,57(6):1259-1281.

    42. [42]

      Vener M V, Manaev A V, Egorova A N, Tsirelson V G. QTAIM Study of Strong H-Bonds with the O-H…A Fragment (A=O, N) in Three-Dimensional Periodical Crystals[J]. J. Phys. Chem. A, 2007,111(6):1155-1162. doi: 10.1021/jp067057d

    43. [43]

      Espinosa E, Alkorta I, Elguero J, Molins E. From Weak to Strong interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X-H…F-Y Systems[J]. J. Chem. Phys., 2002,117(12):5529-5542. doi: 10.1063/1.1501133

    44. [44]

      Cameron T S, Decken A, Krossing I, Passmore J, Rautiainen J M, Wang X P, Zeng X Q. Reactions of a CyclodimethyLSiloxane (Me2SiO)6 with Silver Salts of Weakly Coordinating Anions; Crystal Structures of[Ag(Me2SiO)6] [Al] ([Al]=[FAl{OC(CF3)3}3], [Al{OC(CF3)3}4]) and Their Comparison with[Ag(18-Crown-6)]2[SbF6]2[J]. Inorg. Chem., 2013,52(6):3113-3126. doi: 10.1021/ic3025793

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(12)
  • Abstract views(1267)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return