Citation: Ting ZHAO, Jia-Ying JIAN, Peng-Fan DONG, Hao FENG, Ya-Xin NAN, Fang-E CHANG. Preparation and Properties of Resistive Random Access Memory Based on Tin Disulfide Nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2020-2028. doi: 10.11862/CJIC.2021.235 shu

Preparation and Properties of Resistive Random Access Memory Based on Tin Disulfide Nanosheets

  • Corresponding author: Jia-Ying JIAN, jianjiaying@xatu.edu.cn
  • Received Date: 17 May 2021
    Revised Date: 7 September 2021

Figures(8)

  • Here, SnS2 nanosheets with the size of 50-100 nm were synthesized by hydrothermal method, and was used as the resistive layer material (Cu/PMMA/SnS2/Ag, PMMA=polymethyl methacrylate) for the first time. The results showed that the ON/OFF ratio of Cu/PMMA/SnS2/Ag resistive random access memory was about 105, and the endurance was 2.7×103. The on-state voltage and off-state voltage were only about 0.28 and -0.19 V, respectively.
  • 加载中
    1. [1]

      Guo T, Elshekh H, Yu Z, Yu B, Wang D, Kadhim M S, Chen Y Z, Hou W T, Sun B. Effect of Crystalline State on Conductive Filaments Forming Process in Resistive Switching Memory Devices[J]. Mater. Today Commun., 2019,20:100540-100555. doi: 10.1016/j.mtcomm.2019.100540

    2. [2]

      Sharma Y, Pavunny S P, Fachini E, Scott J F, Katiyar R S. Nonpolar Resistive Memory Switching with all Four Possible Resistive Switching Modes in Amorphous LaHoO3 Thin Films[J]. J. Appl. Phys., 2015,118(9):4506-4514.  

    3. [3]

      Strukov D B, Snider G S, Stewart D R, Williams R S. The Missing Memristor Found[J]. Nature, 2008,453:80-83. doi: 10.1038/nature06932

    4. [4]

      Onofrio N, Guzman D, Strachan A. Atomic Origin of Ultrafast Resistance Switching in Nanoscale Electrometallization Cells[J]. Nat. Mater., 2015,14(4):440-446. doi: 10.1038/nmat4221

    5. [5]

      Zhou G D, Sun B, Yao Y Q, Zhang H H, Zhou A K, Alameh K, Ding B F, Song Q L. Investigation of the Behaviour of Electronic Resistive Switching Memory Based on MoSe2-Doped Ultralong Se Microwires[J]. Appl. Phys. Lett., 2016,109(14):5655-5657.

    6. [6]

      Ghoneim M T, Zidan M A, Alnassar M Y, Hanna A N, Kosel J, Salama K N, Hussain M M. Flexible Electronics: Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications[J]. Adv. Electron. Mater., 2015,1(6):1-6.  

    7. [7]

      Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso L E. A Light-Controlled Resistive Switching Memory[J]. Adv. Mater., 2012,24(18):2496-2500. doi: 10.1002/adma.201200382

    8. [8]

      Mao S S, Zhang X J, Sun B, Li B, Zhu S H, Zheng P P, Zheng L, Xia Y D. Multi-stage Switching Phenomenon in Ultra-Thin Ag Films Embedded into SrCoO3 Multilayer Films Constructed Resistive Switching Memory Devices[J]. Funct. Mater. Lett., 2018,2:1850-1857.

    9. [9]

      Lv F Z, Gao C X, Zhang P, Dong C H, Zhang C, Xue D S. Bipolar Resistive Switching Behavior of CaTiO3 Films Grown by Hydrothermal Epitaxy[J]. RSC Adv., 2015,5(51):40714-40718. doi: 10.1039/C5RA02605A

    10. [10]

      Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S. Memristive Switches Enable Stateful Logic Operations via Material Implication[J]. Nature, 2010,464:873-876. doi: 10.1038/nature08940

    11. [11]

      ZHANG J Q, WU X F, MA X Y, YUAN L, HUANG K K, FEN S H. Amorphous La075Sr0.25MnO3 Film Prepared by Pulsed Laser Deposition for Translucent Resistive Memory[J]. Chinese J. Inorg. Chem., 2018,34(4):784-790.  

    12. [12]

      WU X F, YUAN L, HUANG K K, FENG S H. Memristive Effects in Inorganic Solid Materials[J]. Chinese J. Inorg. Chem., 2015,31(9):1726-1738.  

    13. [13]

      Zhao M, Zhu Y D, Wang Q W, Wei M C, Liu X L, Zhang F, Hu C, Zhang T T, Qiu D, Li M Y, Xiong R. Electric Field-Induced Coexistence of Nonvolatile Resistive and Magnetization Switching in Pt/NiO/Nb: SrTiO3 Heterostructure[J]. Appl. Phys. Lett., 2016,109(13):504-510.  

    14. [14]

      Sangwan V K, Jariwala D, Kim I S, Chen K S, Marks T J, Lauhon L J, Hersam M C. Gate-Tunable Memristive Phenomena Mediated by Grain Boundaries in Single-Layer MoS2[J]. Nat. Nanotechnol., 2015,10(5):403-406. doi: 10.1038/nnano.2015.56

    15. [15]

      Das S, Gulotty R, Sumant A V, Roelofs A. All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor[J]. Nano Lett., 2014,14(5):2861-2866. doi: 10.1021/nl5009037

    16. [16]

      Pawbake A S, Waykar R G, Late D J, Jadkar S R. Highly Transparent Wafer Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity Sensing Applications[J]. ACS Appl. Mater. Interfaces, 2016,8(5):3359-3384. doi: 10.1021/acsami.5b11325

    17. [17]

      SHAO Y J, SHEN J, GONG S K, CHEN W, ZHOU J. Resistance Switching Effect of CuInS2 Quantum Dots[J]. Chinese J. Inorg. Chem., 2020,36(11):2093-2099. doi: 10.11862/CJIC.2020.225 

    18. [18]

      Serag M F, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y. Trafficking and Subcellular Localization of Multiwalled Carbon Nanotubes in Plant Cells[J]. ACS Nano, 2011,5(1):493-499. doi: 10.1021/nn102344t

    19. [19]

      Zhai Y B, Yang X Q, Wang F, Li Z X, Ding G L, Qiu Z F, Wang Y, Zhou Y, Han S T. Infrared-Sensitive Memory Based on Direct-Grown MoS2-Upconversion-Nanoparticle Heterostructure[J]. Adv. Mater., 2018,30(49)103563.  

    20. [20]

      Sun B, Zhao W X, Liu Y H, Chen P. Resistive Switching Effect of Ag/MoS2/FTO Device[J]. Funct. Mater. Lett., 2015,8(1):50010-50014.  

    21. [21]

      Choi J Y, Yu H C, Lee J J, Jeon J H, Im J H, Jang J H, Jin S W, Kim K K, Cho S H, Chung C M. Preparation of Polyimide/Graphene Oxide Nanocomposite and Its Application to Nonvolatile Resistive Memory Device[J]. Polymers, 2018,10(8)901. doi: 10.3390/polym10080901

    22. [22]

      Bhattacharjee S, Sarkar P K, Prajapat M, Roy A. Electrical Reliability, Multilevel Data Storage and Mechanical Stability of MoS2-PMMA Nanocomposite-Based Non-Volatile Memory Device[J]. J. Phys. D: Appl. Phys., 2017,51(9):1-8.  

    23. [23]

      Rehman M M, Rehman H M M U, Gul J Z, Kim W Y, Karimov K S, Ahmed N. Decade of 2D Materials Based RRAM Devices: A Review[J]. Sci. Technol. Adv. Mater., 2020,173:236-327.  

    24. [24]

      Geng H J, Su Y J, Hao W, Xu M H, Wei L M, Yang Z, Zhang Y F. Controllable Synthesis and Photoelectric Property of Hexagonal SnS2 Nanoflakes by Triton X-100 Assisted Hydrothermal Method[J]. Mater. Lett., 2013,111(10):204-207.  

    25. [25]

      Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A, Sutter P. Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics[J]. ACS Nano, 2014,8(13):10743-10755.  

    26. [26]

      Mu J L, Miao H, Liu E Z, Feng J, Teng F, Zhang D K, Kou Y M, Jin Y P, Fan J, Hu X Y. Enhanced Light Trapping and High Charge Transmission Capacities of Novel Structure for Efficient Photoelec-trochemical Water Splitting[J]. Nanoscale, 2018,10:11881-11893. doi: 10.1039/C8NR03040E

    27. [27]

      Tu F Z, Xu X, Wang P Z, Si L, Zhou X S, Bao J. A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage[J]. J. Phys. Chem. C, 2017,121:3261-3293. doi: 10.1021/acs.jpcc.6b12692

    28. [28]

      Liu J Z, Xia C X, Li H L, Pan A L. High On/Off Ratio Photosensitive Field Effect Transistors Based on Few Layer SnS2[J]. Nanotechnology, 2016,27(34):1-7.

    29. [29]

      Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N. Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions[J]. Adv. Mater., 2011,23:3944-3948. doi: 10.1002/adma.201102584

    30. [30]

      Deshpande N G, Sagade A A, Gudage Y G, Lokhande C D, Sharma R J. Growth and Characterization of Tin Disulfide (SnS2) Thin Film Deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) Technique[J]. J. Alloys Compd., 2017,436(2):421-426.  

    31. [31]

      Zhang Y C, Zhang F, Yang Z J, Xue H G, Dionysiou D D. Development of a New Efficient Visible-Light-Driven Photocatalyst from SnS2 and Polyvinyl Chloride[J]. J. Catal., 2016,344:692-700. doi: 10.1016/j.jcat.2016.10.022

    32. [32]

      Liu G B, Li Z H, Hasan T, Chen X S, Zheng W, Feng W, Jia D C, Zhou Y, Hu P A. Vertically Aligned Two-Dimensional SnS2 Nanosheets with a Strong Photon Capturing Capability for Efficient Photoelectrochemical Water Splitting[J]. J. Mater. Chem. A, 2017,5(5):1989-1995. doi: 10.1039/C6TA08327G

    33. [33]

      Teng W, Wang Y M, Huang H H, Li X Y, Tang Y B. Enhanced Photoelectrochemical Performance of MoS2 Nanobelts-Loaded TiO2 Nanotube Arrays by Photo-Assisted Electrodeposition[J]. Appl. Surf. Sci., 2017,425(17):507-517.  

    34. [34]

      Takeda N, Parkinson B A. Adsorption Morphology, Light Absorption, and Sensitization Yields for Squaraine Dyes on SnS2 Surfaces[J]. J. Am. Chem. Soc., 2003,125(18):5559-5571. doi: 10.1021/ja0278483

    35. [35]

      Hu X H, Song G S, Li W Y, Peng Y L, Jiang L, Xue Y F, Liu Q, Chen Z G, Hu J Q. Phase-Controlled Synthesis and Photocatalytic Properties of SnS, SnS2 and SnS/SnS2 Heterostructure Nanocrystals[J]. Mater. Res. Bull., 2013,48(6):2325-2332. doi: 10.1016/j.materresbull.2013.02.082

    36. [36]

      Pradhan S K, Xiao B, Mishra S, Killam A, Pradhan A K. Resistive Switching Behavior of Reduced Graphene Oxide Memory Cells for Low Power Nonvolatile Device Application[J]. Sci. Rep., 2016,6:1-9. doi: 10.1038/s41598-016-0001-8

    37. [37]

      Celano U, Goux L, Belmonte A, Opsomer K, Franquet A, Schulze A, Detavernier C, Richard O, Bender H, Jurczak M, Vandervorst W. Three-Dimensional Observation of the Conductive Filament in Nanoscaled Resistive Memory Devices[J]. Nano Lett., 2014,14(5):2401-2406. doi: 10.1021/nl500049g

    38. [38]

      Hou X, Yan X, Liu C S, Ding S J, Zhang D W, Zhou P. Operation Mode Switchable Charge-Trap Memory Based on Few-Layer MoS2[J]. Semicond. Sci. Technol., 2018,33:4001-4013.

    39. [39]

      Yun D Y, Kim T W. Nonvolatile Memory Devices Based on Au/Graphene Oxide Nanocomposites with Bilateral Multilevel Characteristics[J]. Carbon, 2015,88:26-32. doi: 10.1016/j.carbon.2015.02.061

  • 加载中
    1. [1]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Lili Wang Chunxia Chen Lina Jia Li Guo Jingjing Cao . Exploration and Practice in Innovative and Interesting Scientific Research Skills Training for Wood Magnetization. University Chemistry, 2024, 39(6): 246-252. doi: 10.3866/PKU.DXHX202310088

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    18. [18]

      Zhanhong Tong Xiaoyu Xie Fangfang Chen . Appreciating Autumn Leaves: A Brief Analysis of the Causes behind “Frost Leaves Redder than February Flowers”. University Chemistry, 2024, 39(9): 183-188. doi: 10.12461/PKU.DXHX202404005

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

Metrics
  • PDF Downloads(11)
  • Abstract views(843)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return