Citation: Hong-Ren RONG, Xian-Mei WANG, Ying-Hua WEI, Xiao-Juan CHEN, Li-Fang LAI, Qi LIU. A Layered Co-MOF Based Electrode Material of Supercapacitor with High-Capacity[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2227-2234. doi: 10.11862/CJIC.2021.230 shu

A Layered Co-MOF Based Electrode Material of Supercapacitor with High-Capacity

Figures(9)

  • A cobalt-based MOF ([Co(4, 4'-bpy)(tfbdc)(H2O)2], Co-BTH, 4, 4'-bpy=4, 4'-bipyridune, H2tfbdc=tetrafluo-roterephthalic acid) was synthesized by a simple solvothermal reaction, and its performance as the electrode material for supercapacitors was evaluated for the first time. The results show that Co-BTH electrode has good pseudocapacitance performance, including high specific capacitance and good rate performance. In 1 mol·L-1 KOH solution, the maximum specific capacitance was 2 316 F·g-1 at a current density of 1 A·g-1. At the current density of 2 A·g-1, the specific capacity of the electrode still kept 847 F·g-1 after 1 000 cycles. The good pseudo-capacitance performance is related to the layered structure of Co-BTH and the small size nanosheets.
  • 加载中
    1. [1]

      Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat. Mater., 2008,7(11):845-854. doi: 10.1038/nmat2297

    2. [2]

      Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Design and Mechanisms of Asymmetric Supercapacitors[J]. Chem. Rev., 2018,118(18):9233-9238. doi: 10.1021/acs.chemrev.8b00252

    3. [3]

      Song Y D, Yu L L, Gao Y R, Shi C D, Cheng M L, Wang X M, Liu H J, Liu Q. One-Dimensional Zinc-Based Coordination Polymer as a Higher Capacity Anode Material for Lithium Ion Batteries[J]. Inorg. Chem., 2017,56(17):11603-11609.  

    4. [4]

      Zheng S S, Li X R, Yan B Y, Hu Q, Xu Y X, Xiao X, Xue H G, Pang H. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv. Energy Mater., 2017,7(18)1602733. doi: 10.1002/aenm.201602733

    5. [5]

      Gao G X, Wang X M, Ma Y W, Rong H R, Lai L F, Liu Q. A Three-Dimensional Co 5-Cluster-Based MOF as a High-Performance Electrode Material for Supercapacitor[J]. Ionics, 2020,269(119):5189-5197. doi: 10.1007/s11581-020-03649-8

    6. [6]

      Wang S L, Liu N S, Su J, Li L Y, Long F, Zou Z G, Jiang X L, Gao Y H. Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs[J]. ACS Nano, 2017,11:2066-2074. doi: 10.1021/acsnano.6b08262

    7. [7]

      Han X, Tao K, Wang D, Han L. Design of a Porous Cobalt Sulfide Nanosheet Array on Ni Foam from Zeolitic Imidazolate Frameworks as an Advanced Electrode for Supercapacitors[J]. Nanoscale, 2018,10:2735-2741. doi: 10.1039/C7NR07931A

    8. [8]

      Xiong D B, Li X F, Bai Z M, Lu S G. Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage[J]. Small, 2018,14(17)1703419. doi: 10.1002/smll.201703419

    9. [9]

      Li B, Zheng M B, Xue H G, Pang H. High Performance Electrochemical Capacitor Materials Focusing on Nickel Based Materials[J]. Inorg. Chem. Front., 2016,3:175-202. doi: 10.1039/C5QI00187K

    10. [10]

      Wang G P, Zhang L, Zhang J J. A Review of Electrode Materials for Electrochemical Supercapacitors[J]. Chem. Soc. Rev., 2012,41(2):797-828. doi: 10.1039/C1CS15060J

    11. [11]

      Xu K B, Li W Y, Liu Q, Li B, Liu X J, An L, Chen Z G, Zou R J, Hu J Q. Hierarchical Mesoporous NiCo2O4@MnO2 Core-Shell Nanowire Arrays on Nickel Foam for Aqueous Asymmetric Supercapacitors[J]. J. Mater. Chem. A, 2014,2:4795-4802. doi: 10.1039/c3ta14647b

    12. [12]

      Tao K, Han X, Cheng Q H, Yang Y J, Yang Z, Ma Q X, Han L. Zinc Cobalt Sulfide Nanosheets Array Derived from 2D Bimetallic Metal-Organic Frameworks for High-Performance Supercapacitor[J]. Chem. Eur. J., 2018,24:12584-12591. doi: 10.1002/chem.201800960

    13. [13]

      Zhou Y J, Mao Z M, Wang W, Yang Z K, Liu X. In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials[J]. ACS Appl. Mater. Interfaces, 2016,8:28904-28916. doi: 10.1021/acsami.6b10640

    14. [14]

      Wang L, Feng X, Ren L T, Piao Q H, Zhong J Q, Wang Y B, Li H W, Chen Y F, Wang B. Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI[J]. J. Am. Chem. Soc., 2015,137(15):4920-4923. doi: 10.1021/jacs.5b01613

    15. [15]

      Wang L, Han Y Z, Feng X, Zhou J W, Qi P F, Wang B. Metal-Organic Frameworks for Energy Storage: Batteries and Supercapacitors[J]. Coord. Chem. Rev., 2016,307:361-381. doi: 10.1016/j.ccr.2015.09.002

    16. [16]

      Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material[J]. ACS Appl. Mater. Interfaces, 2016,8:4585-4591. doi: 10.1021/acsami.5b10781

    17. [17]

      Wang X M, Liu X X, Rong H R, Song Y D, Wen H, Liu Q. Layered Manganese-Based Metal-Organic Framework as a High Capacity Electrode Material for Supercapacitors[J]. RSC Adv., 2017,7:29611-29617. doi: 10.1039/C7RA04374K

    18. [18]

      Yu L L, Wang X M, Cheng M L, Rong H R, Song Y D, Liu Q. A 3D Copper Coordination Polymer Constructed by 3-Methyl-1H-pyrazole-4-carboxylic Acid with Higher Capacitance for Supercapacitors[J]. Cryst. Growth Des., 2018,18:280-285. doi: 10.1021/acs.cgd.7b01219

    19. [19]

      Wang K B, Cao X R, Wang S, Zhao W, Xu J Y, Wang Z K, Wu H. Interpenetrated and Polythreaded Co-Ⅱ-Organic Frameworks as a Supercapacitor Electrode Material with Ultrahigh Capacity and Excellent Energy Delivery Efficiency[J]. ACS Appl. Mater. Interfaces, 2018,10:9104-9115. doi: 10.1021/acsami.7b16141

    20. [20]

      Yang J, Ma Z H, Gao W X, Wei M. Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode[J]. Chem. Eur. J., 2016,23(3):631-636.  

    21. [21]

      Yang J, Xiong P X, Zheng C, Qiu H Y, Wei M D. Metal-Organic Frameworks: A New Promising Class of Materials for a High Performance Supercapacitor Electrode[J]. J. Mater. Chem., 2014,2(39):16640-16644. doi: 10.1039/C4TA04140B

    22. [22]

      Yang J, Zheng C, Xiong P X, Li Y F, Wei M D. Zn-Doped Ni-MOF Material with a High Supercapacitive Performance[J]. J. Mater. Chem., 2014,2(44):19005-19010. doi: 10.1039/C4TA04346D

    23. [23]

      Liu Q, Liu X X, Shi C D, Zhang Y P, Feng X J, Cheng M L, Su S, Gu J D. A Copper-Based Layered Coordination Polymer: Synthesis, Magnetic Properties and Electrochemical Performance in Supercapacitors[J]. Dalton Trans., 2015,44(44):19175-19184. doi: 10.1039/C5DT02918J

    24. [24]

      Sanati S, Abazari R, Morsali A, Kirillov A M, Junk P C, Wang J. An Asymmetric Supercapacitor Based on a Non-calcined 3D Pillared Cobalt (Ⅱ) Metal-Organic Framework with Long Cyclic Stability[J]. Inorg. Chem., 2019,58(23):16100-16111. doi: 10.1021/acs.inorgchem.9b02658

    25. [25]

      Sheberla D, Bachman J C, Elias J S, Sun C J, Yang S H, Dinca M. Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance[J]. Nat. Mater., 2017,16(2):220-224. doi: 10.1038/nmat4766

    26. [26]

      Choi K M, Jeong H M, Park J H, Zhang Y B, Kang J K, Yaghi O M. Supercapacitors of Nanocrystalline Metal Organic Frameworks[J]. ACS Nano, 2014,8(7):7451-7457. doi: 10.1021/nn5027092

    27. [27]

      Kazemi S H, Hosseinzadeh B, Kazemi H, Kiani M A, Hajati S. Facile Synthesis of Mixed Metal Organic Frameworks: Electrode Materials for Supercapacitor with Excellent Areal Capacitance and Operational Stability[J]. ACS Appl. Mater. Interfaces, 2018,10(27):23063-23073. doi: 10.1021/acsami.8b04502

    28. [28]

      Wang Y Z, Liu Y X, Wang H Q, Liu W, Li Y, Zhang J F, Hou H, Yang J L. Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes[J]. ACS Appl Energy Mater., 2019,2(3):2063-2071. doi: 10.1021/acsaem.8b02128

    29. [29]

      Lee D Y, Yoon S J, Shrestha N K, Lee S H, Ahn H, Han S H. Unusual Energy Storage and Charge Retention in Co-Based Metal-Organic-Frameworks[J]. Microporous Mesoporous Mater., 2012,153:163-165. doi: 10.1016/j.micromeso.2011.12.040

    30. [30]

      RONG H R, WANG X M, MA Y W, GAO G X, SU H Q, LAI L F, LIU Q. Three-Dimensional Cobalt-Based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as a High-Capacity Electrode Materials for Supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):206-212.  

    31. [31]

      Li W H, Ding K, Tian H R, Yao M S, Nath B, Deng W H, Wang Y B, Xu G. Conductive Metal-Organic Framework Nanowire Array Electrodes for High-Performance Solid-State Supercapacitors[J]. Adv. Funct. Mater., 2017,27(27)1702067. doi: 10.1002/adfm.201702067

    32. [32]

      Wang K B, Wang Z K, Wang X, Zhou X Q, Tao Y H, Wu H. Flexible Long-Chain-Linker Constructed Ni-Based Metal-Organic Frameworks with 1D Helical Channel and Their Pseudo-Capacitor Behavior Studies[J]. J. Power Sources, 2018,377:44-51. doi: 10.1016/j.jpowsour.2017.11.087

    33. [33]

      Hulvey Z, Ayala E, Cheetham A. Structural Trends in Coordination Polymers Containing Perfluorinated Dicarboxylates and 4, 4'-Bipyridine[J]. Z. Anorg. Allg. Chem., 2010,635(12):1753-1757.  

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(13)
  • Abstract views(1710)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return