Citation: Wei ZHANG, Yu-Yi ZHANG, Ya-Jie BIAN, Meng-Di CHEN, Xiao-Lei ZHANG, Qing-Yuan JIN, Bing-Wen HU. Controlling Distribution of Gold Nanoparticles in Au@ZIF-8 Core-Shell Structures for Sensing Fluorescent Molecules with Photoluminescence[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2059-2067. doi: 10.11862/CJIC.2021.229 shu

Controlling Distribution of Gold Nanoparticles in Au@ZIF-8 Core-Shell Structures for Sensing Fluorescent Molecules with Photoluminescence

Figures(6)

  • Controlling the distribution of metal nanoparticles in metal@MOF core-shell structures is not easy to realize. We applied the coordination modulation method which has been studied in the synthesis of MOF colloids to synthesize Au@ZIF-8 core-shell nanostructures. Different Au@ZIF-8 core-shell nanostructures have been achieved by employing an excess amount of 2-methylimidazole and various amount of 1-methylimidazole. With our method, the distribution of Au nanoparticles (Au NPs) could be flexibly tuned in the ZIF-8 nanocrystals. Moreover, we investigated the photoluminescent spectra and lifetime of two fluorescent molecules with different sizes, combined with Au@ZIF-8 separately. The aperture size of ZIF-8 determines whether to let the molecules pass through the porous shell to approach Au NPs, and the molecular optical properties are sensitive to the competition of luminescent enhancement and fluorescent quenching of Au NPs.
  • 加载中
    1. [1]

      El-Toni A M, Habila M A, Labis J P, ALOthman Z A, Alhoshan M, Elzatahry A A, Zhang F. Design, Synthesis and Applications of Core-Shell, Hollow Core, and Nanorattle Multifunctional Nanostructures[J]. Nanoscale, 2016,8:2510-2531. doi: 10.1039/C5NR07004J

    2. [2]

      An W, Liu P. Rationalization of Au Concentration and Distribution in AuNi@Pt Core-Shell Nanoparticles for Oxygen Reduction Reaction[J]. ACS Catal., 2015,5:6328-6336. doi: 10.1021/acscatal.5b01656

    3. [3]

      Wang X K, Liu J, Zhang L, Dong L Z, Li S L, Kan Y H, Li D S, Lan Y Q. Monometallic Catalytic Models Hosted in Stable Metal-Organic Frameworks for Tunable CO2 Photoreduction[J]. ACS Catal., 2019,9:1726-1732. doi: 10.1021/acscatal.8b04887

    4. [4]

      Shiga T, Kumamaru R, Newton G N, Oshio H. Heteroleptic Iron (Ⅱ) Complexes with Naphthoquinone-Type Ligands[J]. Dalton Trans., 2020,49:1485-1491. doi: 10.1039/C9DT03946E

    5. [5]

      Chen X R, Tong R L, Shi Z Q, Yang B, Liu H, Ding S P, Wang X, Lei Q F, Wu J, Fang W J. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor[J]. ACS Appl. Mater. Interfaces, 2018,10:2328-2337. doi: 10.1021/acsami.7b16522

    6. [6]

      Qiao X Z, Su B S, Liu C, Song Q, Luo D, Mo G, Wang T. Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure[J]. Adv. Mater., 2018,301702275. doi: 10.1002/adma.201702275

    7. [7]

      He L C, Liu Y, Liu J Z, Xiong Y S, Zheng J Z, Liu Y L, Tang Z Y. Core-Shell Noble-Metal@Metal-Organic-Framework Nanoparticles with Highly Selective Sensing Property[J]. Angew. Chem. Int. Ed., 2013,125:3829-3833. doi: 10.1002/ange.201209903

    8. [8]

      Lu G, Li S Z, Guo Z, Farha O K, Hauser B G, Qi X Y, Wang Y, Wang X, Han S Y, Liu X G. Imparting Functionality to a Metal-Organic Framework Material by Controlled Nanoparticle Encapsulation[J]. Nat. Chem., 2012,4:310-316. doi: 10.1038/nchem.1272

    9. [9]

      Chen L Y, Peng Y, Wang H, Gu Z Z, Duan C Y. Synthesis of Au@ZIF-8 Single-or Multi-core-Shell Structures for Photocatalysis[J]. Chem. Commun., 2014,50:8651-8654. doi: 10.1039/C4CC02818J

    10. [10]

      Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angew. Chem. Int. Ed., 2009,121:4833-4837. doi: 10.1002/ange.200901177

    11. [11]

      Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering[J]. Chem. Mater., 2011,23:2130-2141. doi: 10.1021/cm103571y

    12. [12]

      Yanai N, Granick S. Directional Self-Assembly of a Colloidal Metal-Organic Framework[J]. Angew. Chem. Int. Ed., 2012,124:5736-5739. doi: 10.1002/ange.201109132

    13. [13]

      Yanai N, Sindoro M, Yan J, Granick S. Electric Field-Induced Assembly of Monodisperse Polyhedral Metal-Organic Framework Crystals[J]. J. Am. Chem. Soc., 2013,135:34-37. doi: 10.1021/ja309361d

    14. [14]

      Cravillon J, Münzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework[J]. Chem. Mater., 2009,21:1410-1412. doi: 10.1021/cm900166h

    15. [15]

      Liu S, Xiang Z H, Hu Z, Zheng X P, Cao D P. Zeolitic Imidazolate Framework-8 as a Luminescent Material for the Sensing of Metal ions and Small Molecules[J]. J. Mater. Chem., 2011,21:6649-6653. doi: 10.1039/c1jm10166h

    16. [16]

      Ding Q Q, Wang J, Chen X Y, Liu H, Li Q J, Wang Y L, Yang S K. Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function[J]. Nano Lett., 2020,20:7304-7312. doi: 10.1021/acs.nanolett.0c02683

    17. [17]

      Niu J X, Pan C D, Liu Y T, Lou S T, Wu E, Wu B T, Zhang X L, Jin Q Y. Plasmon-Enhanced Fluorescence of Submonolayer Porphyrins by Silver-Polymer Core-Shell Nanoparticles[J]. Opt. Express, 2018,26:3489-3496. doi: 10.1364/OE.26.003489

    18. [18]

      Popov P, Steinkerchner L, Mann E K. Molecular Dynamics Study of Rhodamine 6G Diffusion at n-Decane-Water Interfaces[J]. Phys. Rev. E, 2015,91053308. doi: 10.1103/PhysRevE.91.053308

    19. [19]

      Zhang X L, Chen L G, Lv P, Gao H Y, Wei S J, Dong Z C, Hou J G. Fluorescence Decay of Quasimonolayered Porphyrins near a Metal Surface Separated by Short-Chain Alkanethiols[J]. Appl. Phys. Lett., 2008,92223118. doi: 10.1063/1.2938861

    20. [20]

      Reineck P, Gómez D, Ng S H, Karg M, Bell T, Mulvaney P, Bach U. Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO2 Core-Shell Nanoparticles[J]. ACS Nano, 2013,7:6636-6648. doi: 10.1021/nn401775e

    21. [21]

      Zheng G C, de Marchi S, López-Puente V, Sentosun K, Polavarapu L, Pérez-Juste I, Hill E H, Bals S, Liz-Marzán L M, Pastoriza-Santos I. Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility[J]. Small, 2016,12:3935-3943. doi: 10.1002/smll.201600947

    22. [22]

      Carrillo-Carrión C, Martínez R, Navarro Poupard, M F, Pelaz B, Polo E, Arenas-Vivo A, Olgiati A, Taboada P, Soliman M G, Catalán Ú. Aqueous Stable Gold Nanostar/ZIF-8 Nanocomposites for Light-Triggered Release of Active Cargo Inside Living Cells[J]. Angew. Chem. Int. Ed., 2019,58:7078-7082. doi: 10.1002/anie.201902817

    23. [23]

      Morabito J V, Chou L Y, Li Z H, Manna C M, Petroff C A, Kyada R J, Palomba J M, Byers J A, Tsung C K. Molecular Encapsulation beyond the Aperture Size Limit Through Dissociative Linker Exchange in Metal-Organic Framework Crystals[J]. J. Am. Chem. Soc., 2014,136:12540-12543. doi: 10.1021/ja5054779

    24. [24]

      Dulkeith E, Morteani A, Niedereichholz T, Klar T, Feldmann J, Levi S, Van Veggel F, Reinhoudt D, Möller M, Gittins D. Fluorescence Quenching of Dye Molecules Near Gold Nanoparticles: Radiative and Nonradiative Effects[J]. Phys. Rev. Lett., 2002,89203002. doi: 10.1103/PhysRevLett.89.203002

    25. [25]

      Anger P, Bharadwaj P, Novotny L. Enhancement and Quenching of Single-Molecule Fluorescence[J]. Phys. Rev. Lett., 2006,96113002. doi: 10.1103/PhysRevLett.96.113002

    26. [26]

      Wang D, Pevzner L, Li C, Peneva K, Li C Y, Chan D Y, Müllen K, Mezger M, Koynov K, Butt H J. Layer with Reduced Viscosity at Water-Oil Interfaces Probed by Fluorescence Correlation Spectroscopy[J]. Phys. Rev. E, 2013,87012403. doi: 10.1103/PhysRevE.87.012403

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    3. [3]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    4. [4]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    5. [5]

      Xicheng LiDong MoShoushan HuMeng PanMeng WangTingyu YangChangxing QuYujia WeiJianan LiHanzhi DengZhongwu BeiTianying LuoQingya LiuYun YangJun LiuJun WangZhiyong Qian . A Pt@ZIF-8/ALN-ac/GelMA composite hydrogel with antibacterial, antioxidant, and osteogenesis for periodontitis. Chinese Chemical Letters, 2025, 36(9): 110674-. doi: 10.1016/j.cclet.2024.110674

    6. [6]

      Tianxia ChenYunhui ChenWeiwei LiPeipei CenYan GuoJin ZhangCunding KongXiangyu Liu . Fabricating AuAg-nanoparticles/ZIF-8 composites for selective detection and efficient extraction of dinitroaniline pesticides. Chinese Chemical Letters, 2025, 36(8): 110214-. doi: 10.1016/j.cclet.2024.110214

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    9. [9]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    10. [10]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    11. [11]

      Jianning ZhangYihuai ZhangGuoxin MaJingchen ZhaoTao ZhangJian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    15. [15]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    16. [16]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    19. [19]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    20. [20]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

Metrics
  • PDF Downloads(9)
  • Abstract views(817)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return