Citation: Hong-Hua WU, Feng-Hua ZU, Shan FU, Xiao-Long DONG, Su-Yun LI, Jian-Jun YI, Hai-Jun HAO, Qing-Hong XU. Ag@Silsequioxanes: Synthesis and Its Catalytic Reduction Performance for p-Nitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1961-1969. doi: 10.11862/CJIC.2021.225 shu

Ag@Silsequioxanes: Synthesis and Its Catalytic Reduction Performance for p-Nitrophenol

Figures(9)

  • Aminopropyltriethoxysilane and oxalyl chloride were used as raw materials to synthesize silsesquioxanes containing imino and carbonyl functional groups. A composite with silver nanoparticles (average particle size of about 15 nm) uniformly dispersed on the surface of the siloxane polymer was obtained through coordination adsorption and reduction. The research results showed that the weight percentage of silver loaded in the composite was about 13.66% and p-nitrophenol (4-NP) was completely reduced to 4-aminophenol (4-AP) within 6 min at 25℃ in aqueous solution by the composite catalyst, and the composite catalyst remained 95% activity after used 7 times. Under room temperature and one atmospheric pressure, the highest activity of the composite catalyst was about 33.0 g4-AP·gAg-1, which showed excellent catalytic reduction performance.
  • 加载中
    1. [1]

      Rahimi R, Moghaddam S S, Rabbani M. Comparison of Photocatalysis Degradation of 4-Nitrophenol Using N, S Co-doped TiO2 Nanoparticles Synthesized by Two Different Routes[J]. J. Sol-Gel Sci. Technol., 2012,64:17-26. doi: 10.1007/s10971-012-2823-6

    2. [2]

      Pohanish R P. Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens. 6nd ed. U. S. : William Andrew Publishing, 2012: 2757-2760

    3. [3]

      Tang P, Deng C Y, Tang X S, Si S H, Xiao K. Degradation of p-Nitrophenol by Interior Microelectrolysis of Zero-Valent Iron/Copper-coated Magnetic Carbon Galvanic Couples in the Intermittent Magnetic Field[J]. Chem. Eng. J., 2012,210:203-211. doi: 10.1016/j.cej.2012.08.089

    4. [4]

      Folsom B R, Stierli R, Schwarzenbach R P, Zeyer J. Comparison of Substituted 2-Nitrophenol Degradation by Enzyme Extracts and Intact Cells[J]. Environ. Sci. Technol., 1994,28(2):306-311. doi: 10.1021/es00051a018

    5. [5]

      QIAO Z H, LIU H L, HE C X, WEI C M. Research Progress on the Removal of p-Nitrophenol[J]. Guangdong Chemical Industry, 2019,46(21):72-73, 81.  

    6. [6]

      Park S J, Kim K D. Influence of Activation Temperature on Adsorption Characteristics of Activated Carbon Fiber Composites[J]. Carbon, 2001,39(11):1741-1746. doi: 10.1016/S0008-6223(00)00305-5

    7. [7]

      ZHANG W, YONG H Y, CHEN X Q. Treatment of Industrial Wastewater Containing p-Nitrophenol by Resin Adsorption[J]. China Chlor-Alkali, 2003,4:39-41.  

    8. [8]

      WANG Y H. The Synthetic of Sulfidated Nano Zero Valent Iron Supported by Bentonite and the Research on the Removal of p-Nitrophenol. Jinan: Shandong University, 2018.

    9. [9]

      PAN S L. Application of Silicalite-2 Zeolite in Water Treatment. Yangzhou: Yangzhou University, 2013.

    10. [10]

      WAN H, HUANG D Y, CAI Y, GUAN G F. Extraction of Phenolic Compounds with[omim] BF4 Ionic Liquid.[J]. J. Chem. Eng. Chinese Univ., 2008,22(1):162-165. doi: 10.3321/j.issn:1003-9015.2008.01.030

    11. [11]

      Xu J Q, Duan W H, Zhou X Z, Zhou J Z. Extraction of Phenol in Wastewater with Annular Centrifugal Contactors[J]. J. Hazard. Mater., 2006,131(1/2/3):98-102.

    12. [12]

      YANG P F. Treatment of High Concentration Nitrobenzene Wastewater by Extraction-Homogeneous Catalytic Ozonation Enhanced by High Gravity. Taiyuan: North University of China, 2018.

    13. [13]

      Nielson C E. Recycling of Waste Waters from Textile Dyeing Using Crossflow Membrane Filtration[J]. Filtr. Sep., 1994,31(6):593-595. doi: 10.1016/0015-1882(94)80051-0

    14. [14]

      WAN Y H, WANG X D, ZHANG X J. Study on the Treatment of Wastewater Containing High Concentration of Phenol by Liquid Membrane[J]. Journal of South China University of Technology (Natural Science Edition), 1998,26(6):37-42. doi: 10.3321/j.issn:1000-565X.1998.06.007

    15. [15]

      Ribeiro R M, Bergamasco R, Gimenes M L. Membranes Synthesis Study for Colour Removal of a Textile Effluent[J]. Desalination, 2002,145:61-63. doi: 10.1016/S0011-9164(02)00368-5

    16. [16]

      DENG G C, LIU G J, JIANG K X, WANG X, ZHANG X, ZHANG Y Y, ZHANG S L. Treatment of Nitrophenol Wastewater by the Emulsion Liquid Membrane Method[J]. Journal of Liaoning University (Natural Sciences Edition), 2005,3:210-214. doi: 10.3969/j.issn.1000-5846.2005.03.005

    17. [17]

      Prakash D, Chauhan A, Jain R K. Plasmid-Encoded Degradation of p-Nitrophenol by Pseudomonas Cepacian[J]. Biochem. Biophys. Res. Commun., 1996,224(2):380-381.  

    18. [18]

      Bhatti Z I, Toda H, Furukawa K. p-Nitrophenol Degradation by Activated Sludge Attached on Nonwovens[J]. Water Res., 2002,36(5):1135-1142. doi: 10.1016/S0043-1354(01)00292-5

    19. [19]

      Sponza D T, Kuşçu Ö S. p-Nitrophenol Removal in a Sequential Anaerobic Migrating Blanket Reactor (AMBR)/Aerobic Completely Stirred Tank Reactor (CSTR) System[J]. Process Biochem., 2005,40(5):1679-1691. doi: 10.1016/j.procbio.2004.06.063

    20. [20]

      REN L, LIU B, LIN Z, ZHEN Z, LIU Y L, HU H Q, YAN Y C. Isolation of a p-Nitrophenol-Degrading Bacterium and Investigation of Its Degrading Mechanism[J]. Biotechnology Bulletin, 2019,35(9):184-193.  

    21. [21]

      ZHAO X L. Mechanism Study on Degradation of p-Nitrophenol by Fenton Reagent. Nanjing: Nanjing University of Science and Technology, 2014.

    22. [22]

      ZHANG W B, XIAO X M, FU J M, SHENG G Y, LIU G H. Degradation of Nitrophenol in Water by UV/H2O2 Process and Influencing Factors[J]. Research of Environmental Sciences, 2001,6:9-11.  

    23. [23]

      QIU L P, WANG W K, DU J. Degradation of Low Concentration Nitrobenzene in Underground Water by KMnO4-O3 Synergetic Oxidation[J]. Technology of Water Treatment, 2009,7:46-50.  

    24. [24]

      XU Y. Study on the Process and Mechanism of Degradation of Nitro-phenol by Advanced Oxidation Process. Guangzhou: South China University of Technology, 2016.

    25. [25]

      LI S Y, LIU Y Z, ZHANG Q L, BAI M. Review on Preparation Methods of p-Aminophenol[J]. Fine and Specialty Chemicals, 2011,19(12):52-54. doi: 10.3969/j.issn.1008-1100.2011.12.026

    26. [26]

      Pandey S, Mishra S B. Catalytic Reduction of p-Nitrophenol by Using Platinum Nanoparticles Stabilized by Guargum[J]. Carbohydr. Polym., 2014,113:525-531. doi: 10.1016/j.carbpol.2014.07.047

    27. [27]

      HE X Y, LIU Z R, FAN F H, QIANG S L, CHENG L. Preparation of Palladium/Polyelectrolyte Hollow Nanospheres and their Catalytic Activity in 4-Nitrophenol Reduction[J]. Chinese J. Appl. Chem., 2015,32(3):310-316.  

    28. [28]

      WU J M, YANG L, WANG X, WU J, LI S, FENG Y Y, CAI K Y. Bismuth/Nitrogen-Doped Carbon Material Preparation and Its Performance in Catalytically Reducing p-Nitrophenol[J]. Advances in Fine Petrochemicals, 2018,19(2):43-46. doi: 10.3969/j.issn.1009-8348.2018.02.013

    29. [29]

      Tedsree K, Li T, Jones S, Chan C W A, Yu K M K, Bagot P A J, Marquis E A, Smith G D W, Tsang S C E. Hydrogen Production from Formic Acid Decomposition at Room Temperature Using a Ag-Pd Core-Shell Nanocatalyst[J]. Nat. Nanotechnol., 2011,6:302-307. doi: 10.1038/nnano.2011.42

    30. [30]

      Gong P, Li H M, He X X, Wang K M, Hu J B, Tan W H, Zhang S C, Yang X H. Preparation and Antibacterial Activity of Fe3O4@Ag Nanoparticles[J]. Nanotechnology, 2007,18285604. doi: 10.1088/0957-4484/18/28/285604

    31. [31]

      Fu Y S, Huang T, Zhang L L, Zhu J W, Wang X. Ag/gC3N4 Catalyst with Superior Catalytic Performance for the Degradation of Dyes: A Borohydride-Generated Superoxide Radical Approach[J]. Nanoscale, 2015,7:13723-13733. doi: 10.1039/C5NR03260A

    32. [32]

      Elazab H A, Moussa S, Gupton B F, El-Shall M S. Microwave-Assisted Synthesis of Pd Nanoparticles Supported on Fe3O4, Co3O4, and Ni(OH)2 Nanoplates and Catalysis Application for CO Oxidation[J]. J. Nanopart. Res., 2014,162477. doi: 10.1007/s11051-014-2477-0

    33. [33]

      Rashid H M D, Mandal T K. Synthesis and Catalytic Application of Nanostructured Silver Dendrites[J]. J. Phys. Chem. C, 2007,111:16750-16760. doi: 10.1021/jp074963x

    34. [34]

      Loy D A, Obrey-Defriend K A, Wilson J K V, Minke M, Baugher B M, Baugher C R, Schneider D A, Jamison G M, Shea K J. Influence of the Alkoxide Group, Solvent, Catalyst, and Concentration on the Gelation and Porosity of Hexylene-Bridged Polysilsesquioxanes[J]. J. Non-Cryst. Solids, 2013,362(1):82-94.  

    35. [35]

      Pradhan N, Pal A, Pal T. Silver Nanoparticle Catalyzed Reduction of Aromatic Nitro Compounds[J]. Colloids Surf. A, 2002,96:247-257.  

    36. [36]

      QU C. Modification of Pan-Based Activated Carbon Fiber and Its Adsorption and Degradation Properties for p-Nitrophenol. Jinan: Shandong University, 2019.

    37. [37]

      Bao F, Tan F T, Wang W, Qiao X L, Chen J G. Facile Preparation of Ag/Ni(OH)2 Composites with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol[J]. RSC Adv., 2017,7:14283-14289. doi: 10.1039/C6RA27153G

    38. [38]

      MENG X W, YANG H W, HU C Y, MAO Y Y, YANG Y W, CUI H, CHEN J L. Flower-like Silver Sphere Catalytic Material: Preparation and Catalytic Activity for the Hydrogenation Reduction of p-Nitrophenol[J]. Chinese J. Inorg. Chem., 2016,32(11):1981-1986.  

    39. [39]

      Aksela S, Kantia T, Patanen M, Mäkinen A, Urpelainen S, Aksela H. Accurate Free Atom-Solid Binding Energy Shifts for Au and Ag[J]. J. Electron. Spectrosc. Relat. Phenom., 2012,185:273-277. doi: 10.1016/j.elspec.2012.05.007

    40. [40]

      Yang Y W, Mao Y Y, Wang B, Meng X W, Han J, Wang C, Yang H W. Facile Synthesis of Cubical Co3O4 Supported Au Nanocomposites with High Activity for the Reduction of 4-Nitrophenol to 4-Aminophenol[J]. RSC Adv., 2016,6(39):32430-32433. doi: 10.1039/C6RA00183A

    41. [41]

      TANG T. Preparation and Catalytic Properties of Fe3O4@SiO2/PVP-MBAAm/Ag Hybrid Gel. Changchun: Changchun University of Technology, 2019.

  • 加载中
    1. [1]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    2. [2]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    10. [10]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

Metrics
  • PDF Downloads(6)
  • Abstract views(1111)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return