Citation: Qi ZHOU, Xin-Bao LI, Sun-Zhi JIAO. Mesoporous Regulated Co9S8/Ni3S2 Composite Electrode Materials and Electrocatalytic Hydrogen Evolution Performance[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1970-1980. doi: 10.11862/CJIC.2021.223 shu

Mesoporous Regulated Co9S8/Ni3S2 Composite Electrode Materials and Electrocatalytic Hydrogen Evolution Performance

  • Corresponding author: Qi ZHOU, zhouxq301@sina.com
  • Received Date: 10 April 2021
    Revised Date: 20 August 2021

Figures(11)

  • The nano-porous Ni-Co alloy was prepared by rapid solidification and dealloying. After vapor deposition of sulfur and hot hydrogen reduction, nano-porous Co9S8/Ni3S2 composite electrode materials with surface mesoporous were prepared. The results showed that sulfur atoms and Ni-Co alloys formed CoS2/NiS2 composite phases in situ, and after thermal hydrogen reduction, Co9S8/Ni3S2 composite phase with a low sulfur atom ratio was formed. This thermal hydrogen reduction process not only increases the electron density around the Co9S8/Ni3S2 elements, but also modulates heterogeneous interface with mesoporous structure, which improves the electron transport capacity and increases the active surface area. Compared with other Ni and Co sulfides that were prepared under the same condition, Co9S8/Ni3S2 had better hydrogen evolution reaction (HER) activity. When current density was 50 mA·cm-2, the hydrogen evolution overpotential of Co9S8/Ni3S2 was 234 mV, and Tafel slope was 106 mV·dec-1. After stabilization test, the voltage changed only 14 mV.
  • 加载中
    1. [1]

      CHANG J F, XIAO Y, LUO Z Y, GE J J, LIU C P, XING W. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Phys.-Chim. Sin., 2016,32(7):1556-1592.  

    2. [2]

      Walter M G, Warren E L, Mckone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar Water Splitting Cells-Chemical Reviews[J]. J. Am. Chem. Soc., 2010,110:6446-6473.

    3. [3]

      Lewis N S, Nocera D G. Powering the Planet: Chemical Challenges in Solar Energy Utilization[J]. Proc. Natl. Acad. Sci. U.S.A., 2006,103(43):15729-15735. doi: 10.1073/pnas.0603395103

    4. [4]

      Gray H B. Powering the Planet with Solar Fuel[J]. Nat. Chem., 2009,1(1)7. doi: 10.1038/nchem.141

    5. [5]

      Ursua A, Gandia L M, Sanchis P. Hydrogen Production from Water Electrolysis: Current Status and Future Trends[J]. Proc. IEEE, 2012,100(2):410-426. doi: 10.1109/JPROC.2011.2156750

    6. [6]

      Zhang R, Wang X X, Yu S J, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K, Hu W P. Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction[J]. Adv. Mater., 2017,29(9)1605502. doi: 10.1002/adma.201605502

    7. [7]

      Zhang H J, Li X P, Haehnel A, Naumann V, Lin C, Azimi S, Schweizer S L, Maijenburg A W, Wehrspohn R B. Bifunctional Heterostructure Assembly of Ni-Fe LDH Nanosheets on Ni-Co-P Nanowires for Highly Efficient and Stable Overall Water Splitting[J]. Adv. Funct. Mater., 2018,28(14)1706847. doi: 10.1002/adfm.201706847

    8. [8]

      Gupta S, Patel N, Fernandes R, Kadrekar R, Dashora A, Yadav A K, Bhattacharyya D, Jha S N, Miotello A, Kothari D C. Co-Ni-B Nanocatalyst for Efficient Hydrogen Evolution Reaction in Wide pH Range[J]. Appl. Catal. B, 2016,192(5):126-133.  

    9. [9]

      Wu T, Ma Y, Qu Z B, Fan J C, Li Q X, Shi P H, Xu Q J, Min Y L. Black Phosphorus-Graphene Heterostructure-Supported Pd Nanoparticles with Superior Activity and Stability for Ethanol Electro-oxidation[J]. ACS Appl. Mater. Interfaces, 2019,11(5):5136-5145. doi: 10.1021/acsami.8b20240

    10. [10]

      Wu Y S, Liu X J, Han D D, Song X Y, Shi L, Song Y, Niu S W, Xie Y F, Cai J Y, Wu S Y, Kang J, Zhou J B, Chen Z Y, Zheng X S, Xiao X H, Wang G M. Electron Density Modulation of NiCo2S4 Nanowires by Nitrogen Incorporation for Highly Efficient Hydrogen Evolution Catalysis[J]. Nat. Commun., 2018,9(1):1425-1434. doi: 10.1038/s41467-018-03858-w

    11. [11]

      Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting[J]. J. Am. Chem. Soc., 2015,137(44):14023-14026. doi: 10.1021/jacs.5b08186

    12. [12]

      Falkowski J M, Concannon N M, Yan B, Surendranath Y. Heazle-woodite, Ni3S2: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions[J]. J. Am. Chem. Soc., 2015,137(25):7978-7981. doi: 10.1021/jacs.5b03426

    13. [13]

      Zhou W, Zheng J L, Yue Y H, Guo L. Highly Stable rGO-Wrapped Ni3S2 Nanobowls: Structure Fabrication and Superior Long-Life Electrochemical Performance in LIBs[J]. Nano Energy, 2015,11:428-435. doi: 10.1016/j.nanoen.2014.11.022

    14. [14]

      Kumar N, Raman N, Sundaresan A. Synthesis and Properties of Cobalt Sulfide Phases: CoS2 and Co9S8[J]. Z. Anorg. Chem., 2014,640(6):1069-1074. doi: 10.1002/zaac.201300649

    15. [15]

      CHEN J, LI X H, XIONG X B, MA J, ZENG X R, LI J Q, TANG J N, QIAN H X. Hydrothermal Electrochemical Deposition Synthesis of Co9S8 Film Electrode[J]. Rare Met. Mater. Eng., 2019,48(3):967-972.  

    16. [16]

      Yonemoto B T, Hutchings G S, Jiao F. A General Synthetic Approach for Ordered Mesoporous Metal Sulfifides[J]. J. Am. Chem. Soc., 2014,136(25):8895-8898. doi: 10.1021/ja504407e

    17. [17]

      WANG H W, WANG Y D, MAO Q L, AN G Q, CHE Q, ZHANG S J, YIN X. Sulfur-Doped Ordered Mesoporous Carbon as Fuel Cell Electrocatalyst for Oxygen Reduction[J]. Chinese J. Inorg. Chem., 2019,35(3):369-375.  

    18. [18]

      ZHOU Q, LI Z Y, WANG F. Effect of Mo on the Skeleton Structure and Hydrogen Evolution Performance of Ni-Mo Alloys Electrode Prepared by De-alloying[J]. Chem. J. Chinese Universities, 2019,40(8):1717-1725.  

    19. [19]

      Huang Y R, Yang W W, Yu Y S, Hao S. Ordered Mesoporous Spinel CoFe2O4 as Efficient Electrocatalyst for the Oxygen Evolution Reaction[J]. J. Electroanal. Chem., 2019,840:409-414. doi: 10.1016/j.jelechem.2019.04.010

    20. [20]

      Cai B, Zhao M G, Ma Y, Ye Z Z, Huang J Y. Bioinspired Formation of 3D Hierarchical CoFe2O4 Porous Microspheres for Magnetic-Controlled Drug Release[J]. ACS Appl. Mater. Interfaces, 2015,7(2):1327-1333. doi: 10.1021/am507689a

    21. [21]

      Du J, Wang R, Lv Y R, Wei Y L, Zang S Q. One-Step MOF-Derived Co/Co9S8 Nanoparticles Embedded in Nitrogen, Sulfur and Oxygen Ternary-Doped Porous Carbon: An Efficient Electrocatalyst for Over-all Water Splitting[J]. Chem. Commun., 2019,55(22):3203-3206. doi: 10.1039/C9CC00196D

    22. [22]

      Liu Y P, Wang B X, Zhang Q, Yang S Y, Li Y H, Zuo J L, Wang H J, Peng F. A Novel Bicomponent Co3S4/Co@C Cocatalyst on CdS, Accelerating Charge Separation for Highly Efficient Photocatalytic Hydrogen Evolution[J]. Green Chem., 2020,22:238-247. doi: 10.1039/C9GC03323H

    23. [23]

      Zhou W J, Wu X J, Cao X H, Huang X, Tan C L, Tian J, Liu H, Wang J Y, Zhang H. Ni3S2 Nanorods/Ni Foam Composite Electrode with Low Overpotential for Electrocatalytic Oxygen Evolution[J]. Energy Environ. Sci., 2013,6(10):2921-2924. doi: 10.1039/c3ee41572d

    24. [24]

      ZHOU Q, LI X B, LI Z Y. Composite Electrodes of Nano-Porous Ni-Mo Modified by RuO2 and Electrocatalytic Property for Hydrogen Evolution[J]. Chinese J. Inorg. Chem., 2020,36(9):1649-1658.  

    25. [25]

      Wang Q, Gao R, Li J H. Porous, Self-Supported Ni3S2/Ni Nanoarchi-tectured Electrode Operating through Efficient Lithium-Driven Conversion Reactions[J]. Appl. Phys. Lett., 2007,90(14)143107. doi: 10.1063/1.2716308

    26. [26]

      Kandula S, Shrestha K R, Kim N H, Lee J H. Fabrication of a 3D Hierarchical Sandwich Co9S8/α-MnS@N-C@MoS2 Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors[J]. Small, 2018,141800291. doi: 10.1002/smll.201800291

    27. [27]

      Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. Heteronanorods of MoS2-Ni3S2 as Efficient and Stable Bi-Functional Electrocatalysts for Overall Water Splitting[J]. ACS Catal., 2017,7(4):2357-2366. doi: 10.1021/acscatal.6b03192

    28. [28]

      ZHANG C. Preparation and Performance of Mesoporous Iron Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Changchun: Jilin University, 2020.

    29. [29]

      Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces[J]. Science, 2011,334(6060):1256-1260. doi: 10.1126/science.1211934

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(4)
  • Abstract views(640)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return