Citation: Yue-Huan CHENG, Xin-Guo MA, Chu-Yun HUANG, Jia-Jun LIAO, Wang-Yang DUAN. First-Principles Study of Adsorption and Diffusion Behaviors of Li-Ion on Boron-Doped MoSi2N4 Monolayer[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2167-2174. doi: 10.11862/CJIC.2021.219 shu

First-Principles Study of Adsorption and Diffusion Behaviors of Li-Ion on Boron-Doped MoSi2N4 Monolayer

Figures(6)

  • The adsorption and diffusion behaviors of Li-ion on boron-doped MoSi2N4 monolayer were studied by ultrasoft pseudopotential plane-wave method. We established three physical models: substitution sites, interstitial sites and adsorption sites of boron-doped MoSi2N4 monolayer, including six doped configurations. The results show that boron substitution for nitrogen on the surface is the most stable, and the adsorption energy of Li-ion on the configuration is between -1.540 and -1.910 eV. The charge density difference diagram indicates that both boron and nitrogen on the surface accept part of electrons from the Li-ion, which leads to the enhancement of adsorption energy. According to the potential energy difference of Li-ion adsorption on the surface of boron-doped MoSi2N4, it concludes that the diffusion pathway is D→F and the corresponding diffusion barrier is 0.077 eV, it is confirmed that the Li-ion has high extraction-insertion rate on the surface of boron-doped MoSi2N4 monolayer.
  • 加载中
    1. [1]

      WANG P B, ZHENG J C. The Present Situation and Expectation of Lithium-Ion Battery[J]. Chinese Journal of Nature, 2020,39(4):283-289.

    2. [2]

      ZHOU H H, CI Y X, LIU C Y. Progress in Studies of the Electrode Materials for Li-Ion Batteries[J]. Prog. Chem., 1998,10(1):85-94. doi: 10.3321/j.issn:1005-281X.1998.01.008

    3. [3]

      Novoselov K S, Geim A K. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    4. [4]

      Guo P, Song H H. Electrochemical Performance of Graphene Nanosheets as Anode Material for Lithium-Ion Batteries[J]. Electrochem. Commun., 2009,11(6):1320-1324. doi: 10.1016/j.elecom.2009.04.036

    5. [5]

      Pan D Y, Wang S, Zhao B, Wu M H, Zhang H J, Wang Y, Zheng J. Li Storage Properties of Disordered Graphene Nanosheets[J]. Chem. Mater., 2009,21(14):3136-3142. doi: 10.1021/cm900395k

    6. [6]

      Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J]. Nano Lett., 2008,8(8):2277-2282. doi: 10.1021/nl800957b

    7. [7]

      Cresti A, Carrete J, Okuno H, Wang T, Madsen G K H, Mingo N, Pochet P. Growth, Charge and Thermal Transport of Flowered Graphene[J]. Carbon, 2020,161:259-268. doi: 10.1016/j.carbon.2020.01.040

    8. [8]

      Khantha M, Cordero N A, Molina M L, Alonso J A, Girifalco L A. Interaction of Lithium with Graphene: An Ab Initio Study[J]. Phys. Review. B, 2004,70(12)125422. doi: 10.1103/PhysRevB.70.125422

    9. [9]

      Chan K T, Neaton J B, Cohen M L. First-Principles Study of Metal Adatom Adsorption on Graphene[J]. Phys. Rev. B, 2008,77(23)235430. doi: 10.1103/PhysRevB.77.235430

    10. [10]

      Suzuki T, Hasegawa T, Hajime T M. A Theoretical Study on Storage States of Li-Ions in Carbon Anodes of Li-Ion Batteries Using Molecular Orbital Calculations[J]. Carbon, 2003,41(10):1933-1999. doi: 10.1016/S0008-6223(03)00178-7

    11. [11]

      Toyoura K, Koyama Y, Kuwabara A, Oba F, Tanaka I. First-Principles Approach to Chemical Diffusion of Lithium Atoms in a Graphite Intercalation Compound[J]. Phys. Rev. B, 2008,78(21)214303. doi: 10.1103/PhysRevB.78.214303

    12. [12]

      Ong P S, Chevrier V L, Hautier G, Jain A, Moore C, Kim S, Ma X H, Ceder G. Voltage, Stability and Diffusion Barrier Differences between Sodium-Ion and Lithium-Ion Intercalation Materials[J]. Energy Environ. Sci., 2011,4(9):3680-3688. doi: 10.1039/c1ee01782a

    13. [13]

      Fan X F, Zheng W T, Kuo J L. Adsorption and Diffusion of Li on Pristine and Defective Graphene[J]. ACS Appl. Mater. Interfaces, 2012,4(5):2432-2438. doi: 10.1021/am3000962

    14. [14]

      REN W Y, HOU S C, JIANG X N, CHEN W X. MoS2/B-Doped Graphene for Electrochemical Hydrogen Evolution and Lithium Storage[J]. Journal of Zhejiang University (Engineering Science), 2020,54(8):1628-1636.  

    15. [15]

      SHEN J R, GUO C J, CHEN H, ZHOU S Q, XU B, GUAN Y B. Synthesis and Lithium Storage Property of High-Performance N-Doped Reduced Graphene Oxide[J]. Energy Storage Science and Technology, 2019,8(6):1137-1144.

    16. [16]

      Zhang K, Yoon G, Zhang J, Park M, Kang K, Kang Y M. Pseudocapacitive Behaviour and Ultra-Fast Kinetics from Solvated Ion Cointercalation into MoS 2 for Its Quick Alkali Ion Charging[J]. ACS Appl. Energy Mater., 2019,2(5):3726-3735. doi: 10.1021/acsaem.9b00445

    17. [17]

      Li S J, Tang H H, Ge P, Jiang F, Zhou J H, Zhang C Y, Hou H S, Sun W, Ji X B. Electrochemical Investigation of Natural Ore-Molybdenite (MoS2) as First-Hand Anode for Lithium Storages[J]. ACS Appl. Mater. Interfaces, 2018,10(7):6378-6389. doi: 10.1021/acsami.7b18571

    18. [18]

      ZHANG Z W, WANG Q, XUE C L, LIU X P, ZHANG A H, LI M X. First Principles Study on Lithium Storage Behavior of Monolayer MoS 2 Anode Material[J]. Electronics Quality, 2020,402(9):6-14. doi: 10.3969/j.issn.1003-0107.2020.09.002

    19. [19]

      Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C, Shun F, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M, Ren W C. Chemical Vapor Deposition of Layered Two-Dimensional MoSi2N4 Materials[J]. Science, 2020,6504(369):670-674.  

    20. [20]

      Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V, Zhuang X Y. Exceptional Piezoelectricity, High Thermal Conductivity and Stiffness and Promising Photocatalysis in Two-Dimensional MoSi2N4 Family Confirmed by First-Principles[J]. Nano Energy, 2021,82105716. doi: 10.1016/j.nanoen.2020.105716

    21. [21]

      Yi T F, Mei J, Peng P P, Luo S H. Facile Synthesis of Polypyrrole-Modified Li5Cr7Ti6O25 with Improved Rate Performance as Negative Electrode Material for Li-Ion Batteries[J]. Composites Part B, 2019,167:566-572. doi: 10.1016/j.compositesb.2019.03.032

    22. [22]

      Yi T F, Qu J P, Lai X, Han X, Chang H, Zhu Y R. Toward High-Performance Li Storage Anodes: Design and Construction of Spherical Carbon-Coated CoNiO2 Materials[J]. Mater. Today Chem., 2021,19100407. doi: 10.1016/j.mtchem.2020.100407

    23. [23]

      Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev., 1965,140(4A):A1133-A1138. doi: 10.1103/PhysRev.140.A1133

    24. [24]

      Hammer B, Hansen L B, Norskov J K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals[J]. Phys. Rev. B, 1999,59(11):7413-7421. doi: 10.1103/PhysRevB.59.7413

    25. [25]

      Monkhorst H J, Pack J D. Special Points for Brillonin-Zone Integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    26. [26]

      Xiong Q Z, Wang Y, Liu P F, Zheng L R, Wang G Z, Yang H G, Wong P K, Zhang H, Zhao H J. Cobalt Covalent Doping in MoS2 to Induce Bifunctionality of Overall Water Splitting[J]. Adv. Mater., 2018,30(29)180450.  

    27. [27]

      Wang Q, Yu H T, Xie Y, Li M X, Yi T F, Guo C F, Song Q S, Lou M, Fan S S. Structural Stabilities, Surface Morphologies and Electronic Propertiesof Spinel LiTi2O4 as Anode Materials for Lithium-Ion Battery: A First-Principles Investigation[J]. J. Power Sources, 2016,319:185-194. doi: 10.1016/j.jpowsour.2016.04.039

    28. [28]

      LIU H L. Investigations on Adorption ofMetalAtom on Low-Dimensional Materials and Its Applications in Li-Ion Batteries by First-Principle Calculations. Suzhou: Soochow University, 2019.

    29. [29]

      Rehnlund D, Lindgren F, Böhme S, Nordh T, Zou Y, Pettersson J, Bexell U, Boman M, Edström K, Nyholm L. Lithium Trapping in Alloy Forming Electrodes and Current Collectors for Lithium Based Batteries[J]. Energy Environ. Sci., 2017,10(6):1350-1357. doi: 10.1039/C7EE00244K

    30. [30]

      LI P A. First-Principle Studies on Adsorption and Diffusion Behavior of Li on Graphene, BCx and CxN Surfaces. Baotou: Inner Mongulia University of Science & Technology, 2015.

  • 加载中
    1. [1]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    11. [11]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    12. [12]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    13. [13]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    14. [14]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    15. [15]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    17. [17]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

Metrics
  • PDF Downloads(29)
  • Abstract views(4397)
  • HTML views(880)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return