Citation: Hui-Ting XU, Yang LIU, Liu-Lei QIN, Huan-Huan QI, Zun-Qi LIU. Synthesis, Phase Transition and Dielectric Properties of 1, 4-Diazabicyclo[2.2.2]octane-Cyanide Cobalt(Ⅲ) Three-Dimensional Framework Hydrogen-Bonding Crystal[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1950-1960. doi: 10.11862/CJIC.2021.218 shu

Synthesis, Phase Transition and Dielectric Properties of 1, 4-Diazabicyclo[2.2.2]octane-Cyanide Cobalt(Ⅲ) Three-Dimensional Framework Hydrogen-Bonding Crystal

Figures(11)

  • A Dabco-cobalt cyanide hydrogen-bonding framework crystal material, (H3O)(H2Dabco)[Co(CN)6]·H2O (1), has been synthesized by solvent evaporation in the mixed solution of methanol and water with 1, 4-diazabicyclo[2.2.2]octane (Dabco) and cobalt cyanide. The structure, thermal energy and electrical properties of the crystal were characterized by single crystal X-ray diffraction, infrared spectroscopy, elemental analysis, X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry and variable temperature-frequency dielectric constant test. The space group of the crystal is P21/c, which belongs to the monoclinic system at low and room temperature. The structure shows that the cobalt cyano anion, water molecules and protonated water molecules are mutually connected through hydrogen bonds in the crystal to form a three-dimensional network framework, and the protonated (H2Dabco)2+ cations are embedded in it forming a molecular motor-type cystic structure. With the increase of temperature, the (H2Dabco)2+ cations are twisted, which causes a phase transition in the crystal structure near 254 K. Dielectric anomalies occurs along the three axes of the crystal, showing obvious dielectric anisotropy at the same temperature.
  • 加载中
    1. [1]

      Xue C, Yao Z Y, Liu S X, Luo H B, Zou Y, Li L, Ren X M. Dielectric Anomaly and Relaxation Natures in a Zn-Cr Pillar-Layered Metal-Organic Framework with Cages and Channels[J]. J. Solid State Chem., 2017,250:107-113. doi: 10.1016/j.jssc.2017.03.029

    2. [2]

      QI Y, LI Q W. Synthesis of Pillared-Layer Metal-Organic Frameworks from Anthracene Luminescent Linkers and Their Piezochromic Properties[J]. Chem. J. Chinese Universities, 2020,41(3):417-424.  

    3. [3]

      Feng D W, Lei T, Lukatskaya M R, Park J, Huang Z H, Lee M, Shaw L, Chen S C, Yakovenko A A, Kulkarni A, Xiao J, Fredrickson K, Tok J B, Zou X D, Cui Y, Bao Z N. Robust and Conductive Two-Dimensional Metal-Organic Frameworks with Exceptionally High Volumetric and Areal Capacitance[J]. Nat. Energy, 2018,3(1):30-36. doi: 10.1038/s41560-017-0044-5

    4. [4]

      Shi C, Gong Z X, Wang Q W, Han X B, Zhang W. Role of the B'-Site Metal Ion in the Framework Structures and Dielectric Transitions in Host-Guest Type Cyanometalates (HIm)2[B'Co(CN)6] (HIm=Imidazolium Cation)[J]. CrystEngComm, 2020,22(10):1848-1852. doi: 10.1039/C9CE01739A

    5. [5]

      He J, Xu J L, Yin J C, Li N, B X H. Recent Advances in Luminescent Metal-Organic Frameworks for Chemical Sensors[J]. Sci. China Mater., 2019,62(11):1655-1678. doi: 10.1007/s40843-019-1169-9

    6. [6]

      LIANG X, WANG C, LEI Y J, LIU Y D, ZHAO B, LIU F. Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells[J]. Prog. Chem., 2018,30(11):1770-1783.  

    7. [7]

      Zhang W, Xiong R G. Ferroelectric Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):1163-1195. doi: 10.1021/cr200174w

    8. [8]

      Wang H, Yi F Y, Dang S, Tian W G, Sun Z M. Rational Assembly of Co/Cd-MOFs Featuring Topological Variation[J]. Cryst. Growth Des., 2014,14:147-156. doi: 10.1021/cg4013334

    9. [9]

      Zhang X Y, Zhang X, Fan C B, Zong Z A, Zhang D M, Luo Q D, Bi C F, Fan Y H. A Novel Metal-Organic Frameworks Assembled by One Angular Ligand and 5-Aminoisophthalic Acid: Synthesis, Structure, Electrochemical and Photocatalytic Properties[J]. Polyhedron, 2019,168:21-27. doi: 10.1016/j.poly.2019.04.020

    10. [10]

      Du Y, Yang H Y, Liu R J, Shao C Y, Yang L R. A Multi-Responsive Chemosensor for Highly Sensitive and Selective Detection of Fe3+, Cu2+, Cr2O72- and Nitrobenzene Based on a Luminescent Lanthanide Metal-Organic Framework[J]. Dalton Trans., 2020,49(37):13003-13016. doi: 10.1039/D0DT02120B

    11. [11]

      Feng C, Lv C P, Li Z Q, Zhao H, Huang H H. A Porous 2D Ni-MOF Material with a High Supercapacitive Performance[J]. J. Solid State Chem., 2018,265:244-247. doi: 10.1016/j.jssc.2018.06.019

    12. [12]

      Desai A V, Sharma S, Let S, Ghosh S K. N-Donor Linker Based Metal-Organic Frameworks (MOFs): Advancement and Prospects as Functional Materials[J]. Coord. Chem. Rev., 2019,395:146-192. doi: 10.1016/j.ccr.2019.05.020

    13. [13]

      Zhao M M, Zhou L, Shi P P, Zheng X, Chen X G, Gao J X, He L, Ye Q, Liu C M, Fu D W. 3D Organic-Inorganic Perovskite Ferroelastic Materials with Two Ferroelastic Phases: [Et3P(CH2)2F][Mn(dca)3] and[Et3P(CH2)2Cl][Mn(dca)3].[J]. Chemistry, 2019,25(25):6447-6454. doi: 10.1002/chem.201900771

    14. [14]

      Yi F Y, Chen D X, Wu M K, Han L, Jiang H L. Chemical Sensors Based on Metal-Organic Frameworks[J]. ChemPlusChem, 2016,81(8):675-690. doi: 10.1002/cplu.201600137

    15. [15]

      Tsuruoka T, Inoue K, Miyanaga A, Tobiishi K, Ohhashi T, Hata M, Takashima Y, Akamatsu K. Crystal Conversion Between Metal-Organic Frameworks with Different Crystal Topologies for Efficient Crystal Design on Two-Dimensional Substrates[J]. J. Cryst. Growth., 2018,487:1-7. doi: 10.1016/j.jcrysgro.2018.02.007

    16. [16]

      Wen J G L, Li Y W, Gao J K. Two-Dimensional Metal-Organic Frameworks and Derivatives for Electrocatalysis[J]. Chem. Res. Chin. Univ., 2020,36:662-679. doi: 10.1007/s40242-020-0163-6

    17. [17]

      Omkaramurthy B M, Krishnamurthy G. Synthesis, Characterization, Crystal structure, and Electrochemical Study of Zinc(Ⅱ) Metal-Organic Framework[J]. Inorg. Nano-Metal Chem., 2019,49(11):375-384. doi: 10.1080/24701556.2019.1661460

    18. [18]

      Liu C, Zhai K, Yu Z P, Nie A M, Liu Z Y, Sun Y. Hydrogen Bond Tuning of Magnetoelectric Coupling in Metal-Organic Frameworks[J]. J. Phys. Chem. C, 2020,124(29):16111-16115. doi: 10.1021/acs.jpcc.0c03916

    19. [19]

      Zhang X, Cai Y, Yao Y F, Zhang W. A Chemically Triggered and Thermally Switched Dielectric Constant Transition in a Metal Cyanide Based Crystal[J]. Angew. Chem. Int. Ed., 2015,54(21):6206-6210. doi: 10.1002/anie.201501344

    20. [20]

      Ovens J S, Leznoff D B. Thermal Expansion Behavior of MI[AuX2(CN)2] -Based Coordination Polymers (M=Ag, Cu; X=CN, Cl, Br)[J]. Inorg. Chem., 2017,56(13):7332-7343. doi: 10.1021/acs.inorgchem.6b03153

    21. [21]

      Trzebiatowska M, Maczka M, Gagor A, Sieradzki A. Pyrrolidinium-Based Cyanides: Unusual Architecture and Dielectric Switchability Triggered by Order-Disorder Process[J]. Inorg. Chem., 2020,59(13):8855-8863. doi: 10.1021/acs.inorgchem.0c00637

    22. [22]

      Gong Y, Li Z H, Yan X, Wang Y Q, Zhao C Y, Han W K, Hu Q T, Lu H S, Gu Z G. Bivariate Metal-Organic Frameworks with Tunable Spin-Crossover Properties[J]. Chem. Eur. J., 2020,26(54):12472-12480. doi: 10.1002/chem.202002544

    23. [23]

      Wang Z H, Chen Q W. Vapochromic Behavior of MOF for Selective Sensing of Ethanol[J]. Spectrochim. Acta Part A, 2018,194:158-162. doi: 10.1016/j.saa.2017.12.072

    24. [24]

      Han X B, Pan H, Chao S, Zhang W. 1, 4-Diazabicyclo[2.2.2] octane-Based Disalts Showing Non-centrosymmetric Structures and Phase Transition Behaviors[J]. CrystEngComm, 2016,18(9):1563-1569.

    25. [25]

      Sun Z H, Wang X Q, Luo J H, Zhang S Q, Yuan D Q, Hong M C. Ferroelastic Phase Transition and Switchable Dielectric Behavior Associated with Ordering of Molecular Motion in a Perovskite-like Architectured Supramolecular Cocrystal[J]. J. Mater. Chem. C, 2013,1:2561-2567. doi: 10.1039/c3tc30166d

    26. [26]

      Trzebiatowska M, Gagor A, Macalik L, Peksa P, Sieradzki A. Phase Transition in the Extreme: a Cubic-to-Triclinic Symmetry Change in Dielectrically Switchable Cyanide Perovskites[J]. Dalton Trans., 2019,48(42):15830-15840. doi: 10.1039/C9DT03250A

    27. [27]

      Zhang W, Ye H Y, Graf R, Spiess H W, Yao Y F, Zhu R Q, Xiong R G. Tunable and Switchable Dielectric Constant in an Amphidynamic Crystal[J]. J. Am. Chem. Soc., 2013,135(14):5230-5233. doi: 10.1021/ja3110335

    28. [28]

      Cizman A, Kowalska D, Trzebiatowska M, Medycki W, Krupinski M, Staniorowski P, Poprawski R. The Structure and Switchable Dielectric Properties of a Dabco Complex with Chromium Chloride[J]. Dalton Trans., 2020,49(30):10394-10401. doi: 10.1039/D0DT01897J

    29. [29]

      QIN L L, LIU Y, GUAN X Q, ZHENG X Y, ZHANG Z Y, LIU Z Q. Synthesis and Switchable Dielectric Properties of an Inorganic-Organic Hybrid Complex[(H2DABCO) CuCl4] ·H2O.[J]. Chem. J. Chinese Universities, 2020,41(1):70-77.  

    30. [30]

      Chen Q H, Liu Q, Zou Y B, Wang L H, Ma X L, Zhang Z J, Xiang S C. Preparation and Characterization of Metal-Organic Frameworks and Its Composite Eu2O3@[J]. CrystEngComm, 2020,22(18):3188-3197. doi: 10.1039/D0CE00038H

    31. [31]

      Fu L, Chen L J, Yuan H B, Chen Y, Li B. A Two-Fold Interpenetrating Metal-Organic Framework Based on[Co4O(COO)6] Cluster: Synthesis, Crystal Structure and Catalytic Properties.[J]. Inorg. Chem. Commun., 2019,106:180-184. doi: 10.1016/j.inoche.2019.05.038

    32. [32]

      Abbas S, Ayub K, Sohail M, Ali S, Ludwig R, Nadeem M A, Muhammad S. Synthesis, X-ray Crystal Structure and Spin Polarized DFT Study of High Spin Mn Based Metal-Organic Framework[J]. J. Mol. Struct., 2019,1175:439-444.  

    33. [33]

      Kozlova S G, Ryzhikov M R, Shayapov V R, Samsonenko D G. Effect of Spin-Phonon Interaction on Urbach Tails in Flexible[M2(bdc)2(dabco)].[J]. Phys. Chem. Chem. Phys., 2020,22(27):15242-15247. doi: 10.1039/D0CP01944E

    34. [34]

      Liu Z Q, Zhao Y, Liu X H, Zhang X D, Liu Y, Sun W Y. Synthesis, Crystal Structure and Fluorescent Sensing Property of Metal-Organic Frameworks with 1, 3-Di(1H-imidazol-4-yl) benzene and 1, 4-Phenyl-enediacetate[J]. Polyhedron, 2019,167:33-38. doi: 10.1016/j.poly.2019.04.007

    35. [35]

      Lei J, Zeng M Q, Fu L. Two-Dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction[J]. Chem. Res. Chin. Univ., 2020,36(4):504-510. doi: 10.1007/s40242-020-0190-3

    36. [36]

      Sharma N, Dhankhar S S, Nagaraja C M. A Mn(Ⅱ)-Porphyrin Based Metal-Organic Framework (MOF) for Visible-Light-Assisted Cyclo-addition of Carbon Dioxide with Epoxides[J]. Microporous Mesoporous Mater., 2019,280:372-378.  

    37. [37]

      Lee G, Jang J. Lee G, Jang J[J]. High-Performance Hybrid Supercapacitors Based on Novel Co3O4/Co(OH)2 Hybrids Synthesized with VariousSized Metal-Organic Framework Templates. J. Power Sources, 2019,423:115-124.

    38. [38]

      Zong Z A, Fan C B, Zhang X, Meng X M, Jin F, Fan Y H. Synthesis, Crystal Structures and Dye Removal Properties of a Series of Metal-Organic Frameworks Based on N-Heterocyclic Carboxylic Acid Ligands[J]. Microporous Mesoporous Mater., 2019,282:82-90. doi: 10.1016/j.micromeso.2019.03.014

    39. [39]

      Gong Z X, Wang Q W, Ma J J, Jiang J Y, E D Y, Li Z Q, Qi F W, Liang H. Liang H. Reversible Structural Phase Transitions and Switchable Dielectric Behaviours in a Cyanometallate-Based Double Perovskite-Type Cage Compound: [C3H4NS]2[KCo(CN)6].[J]. Mater. Chem. Front., 2020,4(3):918-923.

    40. [40]

      Fu D W, Gao J X, He W H, Huang X Q, Liu Y H, Ai Y. High-Tc Enantiomeric Ferroelectrics Based on Homochiral Dabco-Derivatives (Dabco=1, 4-Diazabicyclo[2[J]. 2.2] octane). Angew. Chem. Int. Ed., 2020,59(40):17477-17481.  

    41. [41]

      ZHENG X Y, LIU Y, QIN L L, YU F F, ZHU C L, LIU Z Q. Synthesis, Structure and Dielectric Properties of Cyanide Cobalt(Ⅲ)Hydrogen-Bonding Cage-like Supramolecular Crystal[J]. Chinese J. Inorg. Chem., 2019,35(2):277-284.  

    42. [42]

      ZHENG X Y, LIU Y, LIU Y, QIN L L, WANG L, LIU Z Q. Synthesis, Phase Transition and Dielectric Properties of Ferrate Cyanogen (Ⅲ) Hydrogen-Bonding Supramolecular Crystal[J]. Chinese J. Inorg. Chem., 2020,36(3):406-414.  

  • 加载中
    1. [1]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    4. [4]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    14. [14]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    15. [15]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(6)
  • Abstract views(843)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return