Citation: Hai-Zhi LIU, Zhi-Hao KONG, Xiao-Yan LIN, Peng-Dong LIU, Fa-Hai DONG, Zhen WANG, Guang-Wu WEN. Effect of La, Ce, Yb Doping on Properties of LiNi0.5Mn1.5O4 High Voltage Cathode Materials[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1782-1792. doi: 10.11862/CJIC.2021.210 shu

Effect of La, Ce, Yb Doping on Properties of LiNi0.5Mn1.5O4 High Voltage Cathode Materials

  • Corresponding author: Guang-Wu WEN, g_wen2016@163.com
  • Received Date: 1 April 2021
    Revised Date: 28 July 2021

Figures(8)

  • High-voltage LiNi0.5Mn1.5O4 cathode materials doped with different rare earth elements were prepared by low temperature combustion method. The effects of different doping ratios (molar ratios of 0.5%, 1%, 2%) and different kinds of rare earth elements (La, Ce, Yb) on the material performance were investigated, and the influence mechanism was explored by X-ray diffraction, Raman spectrum, electron paramagnetic resonance and galvanostatic intermittent titration technique. X-ray diffraction pattern illustrates that rare earth doping can inhibit the generation of LixNi1-xO phase. The inductively coupled plasma spectroscopy illustrates that the doped rare earth elements are basically in accordance with the design proportion. Raman spectrum illustrates that rare earth elements can increase the ordered phase of the material and Ce doped sample has the most ordered phase. In combination with electron paramagnetic resonance oxygen vacancy test, it is found that Ce doped sample induces the increase of the proportion of ordered phase in the material, thus improving the stability of the material. Galvanostatic intermittent titration technique test showed that the diffusion coefficient of Ce-doped LiNi0.5Mn1.5O4 material was about 15 times higher than the undoped sample. In different doping proportion, the material with 1% doping amount had the best performance. Among the samples doping with the best amount of three rare earth elements, Ce doped samples had the best doping performance, and the specific discharge capacity of the first discharge can reach 133.3 mAh·g-1, which was higher than the undoped group and the first discharge efficiency was increased by 18%. After 200 cycles at 1C, the capacity retention rate was 102%, which was 8% higher than the undoped group.
  • 加载中
    1. [1]

      Masias A, Marcicki J, Paxton W A. ACS Energy Lett. , 2021, 6: 621-630  doi: 10.1021/acsenergylett.0c02584

    2. [2]

      Zhu X B, Schulli T, Wang L Z. Chem. Res. Chin. Univ. , 2020, 36(1): 24-32  doi: 10.1007/s40242-020-9103-8

    3. [3]

      Liang G, Peterson V K, See K W, Guo Z, Pang W K. J. Mater. Chem. , 2020, 8(31): 15373-15398  doi: 10.1039/D0TA02812F

    4. [4]

      Li W D, Song B H, Manthiram A. Chem. Soc. Rev. , 2017, 46(10): 3006-3059  doi: 10.1039/C6CS00875E

    5. [5]

      WANG H, BEN L B, LIN M X, CHEN Y Y, HUANG X J. Energy Storage Science and Technology, 2017, 6(5): 841-854
       

    6. [6]

      LI W, ZHOU L, LIU J L. Inorganic Chemicals Industry, 2019, 51(6): 5-10
       

    7. [7]

      Cui X L, Geng T T, Zhang F L, Zhang N S, Zhao D N, Li C L, Li S Y. J. Alloys Compd. , 2020, 820: 153443-153443  doi: 10.1016/j.jallcom.2019.153443

    8. [8]

      Wang L P, Hong L, Huang X J, Baudrin E. Solid State Ionics, 2011, 193(1): 32-38  doi: 10.1016/j.ssi.2011.04.007

    9. [9]

      Gu Y J, Li Y, Chen Y B, Liu H Q. Electrochim. Acta, 2016, 213: 368-374  doi: 10.1016/j.electacta.2016.06.124

    10. [10]

      Hu E, Bak S M, Liu J, Yu X, Zhou Y, Ehrlich S N, Yang X Q, Nam K W. Chem. Mater. , 2013, 26(2): 1108-1118

    11. [11]

      Lee B Y, Chu C T, Krajewski M, Michalska M, Lin J Y. Ceram. Int. , 2020, 46(13): 20856-20864  doi: 10.1016/j.ceramint.2020.05.124

    12. [12]

      Rana J, Glatthaar S, Gesswein H, Sharma N, Binder J R, Chernikov R, Schumacher G, Banhart J. J. Power Sources, 2014, 255: 439-449  doi: 10.1016/j.jpowsour.2014.01.037

    13. [13]

      Amin R, Belharouk I. J. Power Sources, 2017, 348(30): 311-317

    14. [14]

      Lee J, Kim C, Kang B. NPG Asia Mater. , 2015, 7(8): 211-211  doi: 10.1038/am.2015.94

    15. [15]

      Xiao J, Chen X, Sushko P V, Sushko M L, Kovarik L, Feng J, Deng Z, Zheng J, Graff G L, Nie Z, Choi D, Liu J, Zhang J G, Whittingham M S. Adv. Mater. , 2012, 24(16): 2109-2116  doi: 10.1002/adma.201104767

    16. [16]

      Xu X L, Deng S X, Wang H, Liu J B, Yan H. Nano-micro. Lett. , 2017, 9(2): 97-115

    17. [17]

      Wang J F, Chen D, Wu W, Wang L, Liang G C. Trans. Nonferrous Met. Soc. China, 2017, 27(10): 2239-2248  doi: 10.1016/S1003-6326(17)60250-4

    18. [18]

      Wei A J, Li W, Chang Q, Bai X, He R, Zhang L H, Liu Z F, Wang Y. Electrochim. Acta, 2019, 323: 134692  doi: 10.1016/j.electacta.2019.134692

    19. [19]

      Sun P, Ma Y, Zhai T Y, Li H Q. Electrochim. Acta, 2016, 191: 237-246  doi: 10.1016/j.electacta.2016.01.087

    20. [20]

      Bhuvaneswari S, Varadaraju U V, Gopalan R, Prakash R. Electrochim. Acta, 2019, 327: 135008  doi: 10.1016/j.electacta.2019.135008

    21. [21]

      Zong B, Lang Y Q, Yan C H, Deng Z Y, Gong J J, Guo J L, Wang L, Liang G C, Glab C. Mater. Today Commun. , 2020, 24: 101003  doi: 10.1016/j.mtcomm.2020.101003

    22. [22]

      Kocak T F, Wu L Y, Wang J, Savaci U, Turan S, Zhang X G. J. Electroanal. Chem. , 2021, 881(47): 114926

    23. [23]

      Gong J J, Yan S P, Lang Y Q, Zhang Y, Fu S X, Guo J L, Wang L, Liang G C. J. Alloys Compd. , 2021, 859: 157885  doi: 10.1016/j.jallcom.2020.157885

    24. [24]

      Garhi G, Aklalouch M, Favotto C, Mansori M, Saadoune I. J. Electroanal. Chem. , 2020, 873: 114413  doi: 10.1016/j.jelechem.2020.114413

    25. [25]

      Deng M M, Zou B K, Shao Y, Tang Z F, Chen C H. J. Solid State Electrochem. , 2017, 21(6): 1733-1742  doi: 10.1007/s10008-017-3545-z

    26. [26]

      Zhang J N, Sun G, Han Y, Yu F D, Qin X J, Shao G J, Wang Z B. Electrochim. Acta, 2020, 343: 136105  doi: 10.1016/j.electacta.2020.136105

    27. [27]

      Wang H, Tan T A, Yang P, Lai M O, Lu L. J. Phys. Chem. C, 2011, 115(13): 6102-6110  doi: 10.1021/jp110746w

    28. [28]

      Liang G M, Wu Z B, Didier C, Zhang W C, Cuan J, Li B H, Ko K Y, Hung P Y, Lu C Z, Chen Y Z, Leniec G, Kaczmarek S M, Johannessen B, Thomsen L, Peterson V K, Pang W K, Guo Z P. Angew. Chem. Int. Ed. , 2020, 59(26): 10594-10602  doi: 10.1002/anie.202001454

    29. [29]

      Yi T F, Chen B, Zhu Y R, Li X Y, Zhu R S. J. Power Sources, 2014, 247(1): 778-785

    30. [30]

      Yi T F, Xie Y, Zhu Y R, Zhu R S, Ye M F. J. Power Sources, 2012, 211: 59-65  doi: 10.1016/j.jpowsour.2012.03.095

    31. [31]

      Sun H B, Chen Y G, Xu C H, Zhu D, Huang L H. J. Solid State Electrochem. , 2012, 16(3): 1247-1254  doi: 10.1007/s10008-011-1514-5

    32. [32]

      Yang S T, Jia J H, Ding L, Zhang M C. Electrochim. Acta, 2003, 48(5): 569-573  doi: 10.1016/S0013-4686(02)00726-0

    33. [33]

      Liu H W, Zhang K L. Mater. Lett. , 2004, 58(24): 3049-3051  doi: 10.1016/j.matlet.2004.05.040

    34. [34]

      Xu C Q, Tian Y W, Zhai Y C, Liu L Y. Mater. Chem. Phys. , 2006, 98: 532-538  doi: 10.1016/j.matchemphys.2005.09.089

    35. [35]

      Mo M Y, Hui K S, Hong X T, Guo J S, Ye C C, Li A J, Hu N Q, Huang Z Z, Jiang J H, Liang J, Chen H Y. Appl. Surf. Sci. , 2014, 290 (6): 412-418

    36. [36]

      Arumugam D, Kalaignan G P. J. Electroanal. Chem. , 2010, 648(1): 54 -59  doi: 10.1016/j.jelechem.2010.06.021

    37. [37]

      Chen J, Zou G Q, Deng W T, Huang Z D, Gao X, Liu C, Yin S Y, Liu H Q, Deng X L, Tian Y, Li J Y, Wang C W, Wang D, Wu H W, Yang L, Hou H S, Ji X B. Adv. Funct. Mater. , 2020, 30(46): 4360

    38. [38]

      HE G L, HE Y W, ZHAO Z G, LIU M. Acta Phys. Sin. , 2006, 55(2): 839-843  doi: 10.3321/j.issn:1000-3290.2006.02.065

    39. [39]

      Chen Y Y, Sun Y, Huang X J. Comput. Mater. Sci. , 2016, 115: 109-116  doi: 10.1016/j.commatsci.2016.01.005

    40. [40]

      Wu W, Qin X, Guo J L, Wang J F, Yang H S, Wang L. J. Rare Earths, 2017, 35(9): 887-895  doi: 10.1016/S1002-0721(17)60991-8

    41. [41]

      ZHANG Q M, QIAO Y Q, ZHAO M S, WANG L M. Chinese J. Inorg. Chem. , 2012, 28(1): 67-73
       

    42. [42]

      Keppeler M, Nageswaran S, Kim S J, Srinivasan M. Electrochim. Acta, 2016, 213: 904-910  doi: 10.1016/j.electacta.2016.08.014

    43. [43]

      Niemoller A, Jakes P, Eurich S, Paulus A, Kungl H, Rüdiger A E, Granwehr J. J. Chem. Phys., 2018, 148(1): 014705  doi: 10.1063/1.5008251

    44. [44]

      Wang H L, Shi Z Q, Li J W, Yang S, Ren R B, Cui J Y, Xiao J L, Zhang B. J. Chem. Phys. , 2015, 288: 206-213

    45. [45]

      Chudzik K, Witosawski M, Bakierska M, Kubicka M, Natkański P, Kawako J, Molenda M J E A. Electrochim. Acta, 2021, 373: 137901  doi: 10.1016/j.electacta.2021.137901

  • 加载中
    1. [1]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    2. [2]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    5. [5]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    14. [14]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    17. [17]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    20. [20]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

Metrics
  • PDF Downloads(16)
  • Abstract views(1501)
  • HTML views(388)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return