Citation: Jin-Wei CHEN, Ying-Fen ZHUANG, Xun-Zhong ZOU, An-Sheng FENG, Yan-Lai ZHANG, Yu LI. Synthesis, Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) Coordination Polymers Based on Ether-Bridged Tetracarboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(10): 1900-1910. doi: 10.11862/CJIC.2021.208 shu

Synthesis, Structures and Catalytic Activity in Knoevenagel Condensation Reaction of Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) Coordination Polymers Based on Ether-Bridged Tetracarboxylic Acid

  • Corresponding author: Yu LI, liyuletter@163.com
  • #共同第一作者。
  • Received Date: 1 June 2021
    Revised Date: 26 June 2021

Figures(10)

  • Three Cu(Ⅱ)/Co(Ⅱ)/Ni(Ⅱ) coordination polymers, namely {[Cu2(μ5-deta)(2, 2'-bipy)2]·2H2O}n (1), [Co2(μ4-deta)(2, 2'-bipy)2(H2O)3]n(2) and {[Ni2(μ3-deta)(μ-4, 4'-bipy)2.5(H2O)5]·3H2O}n (3), have been constructed hydrothermally using H4deta (2, 3', 4, 4'-diphenyl ether tetracarboxylic acid), 2, 2'-bipy (2, 2'-bipyridine)/4, 4'-bipy (4, 4'-bipyridine) and CuCl2·2H2O, CoCl2·6H2O, NiCl2·6H2O, respectively, at 160℃. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses reveal that the three compounds crystallize in the triclinic or monoclinic systems, space groups P1 or P21/n. Compound 1 discloses a 2D sheet. Compound 2 features a 1D chain structure. Compound 3 shows a 3D framework. The catalytic activity in the Knoevenagel condensation reaction of these compounds were investigated. Compound 1 exhibited an excellent catalytic activity in the Knoevenagel condensation reaction at room temperature.
  • 加载中
    1. [1]

      Chakraborty G, Park I, Medishetty R, Vittal J J. Chem. Rev. , 2021, 121(7): 3751-3891
       

    2. [2]

      Fan W D, Wang X, Xu B, Wang Y T, Liu D D, Zhang M, Shang Y Z, Dai F N, Zhang L L, Sun D F. J. Mater. Chem. A, 2018, 6: 24486-24495
       

    3. [3]

      Fan W D, Yuan S, Wang W J, Feng L, Liu X P, Zhang X R, Wang X, Kang Z X, Dai F N, Yuan D Q, Sun D F, Zhou H C. J. Am. Chem. Soc. , 2020, 142(19): 8728-8737
       

    4. [4]

      Wang H, Li J. Acc. Chem. Res. , 2019, 52(7): 1968-1978
       

    5. [5]

      Xiao J D, Jiang H L. Acc. Chem. Res. , 2019, 52(2): 356-366
       

    6. [6]

      Gu J Z, Wen M, Cai Y, Shi Z F, Arol A S, Kirillova M V, Kirillov A M. Inorg. Chem. , 2019, 58(4): 2403-2412
       

    7. [7]

      Gu J Z, Wen M, Cai Y, Shi Z F, Nesterov D S, Kirillova M V, Kirillov A M. Inorg. Chem. , 2019, 58(9): 5875-5885
       

    8. [8]

      Roy M, Adhikary A, Mondal A K, Mondal R. ACS Omega, 2018, 3(11): 15315-15324
       

    9. [9]

      Salitros I, Herchel R, Fuhr O, Gonzalez-Prieto R, Ruben M. Inorg. Chem. , 2019, 58(7): 4310-4319
       

    10. [10]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J. Ghosh S K. Chem. Soc. Rev. , 2017, 46(10): 3242-3285
       

    11. [11]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Chem. Rev. , 2012, 112(2): 1126-1162
       

    12. [12]

      Haddad S, Lázaro I A, Fantham M, Mishra A, Silvestre-Albero J, Osterrieth J W M, Schierle G S K, Kaminski C F, Forgan R S, Fairen-Jimenez D. J. Am. Chem. Soc. , 2020, 142(14): 6661-6674
       

    13. [13]

      Gu J Z, Wen M, Liang X X, Shi Z F, Kirillova M V, Kirillov A M. Crystals, 2018, 8: 83
       

    14. [14]

      ZHAO S Q, GU J Z. Chinese J. Inorg. Chem. , 2021, 37(4): 751-757
       

    15. [15]

      Li Y, Wu J, Gu J Z, Qiu W D, Feng A S. Chin. J. Struct. Chem. , 2020, 39(4): 727-736
       

    16. [16]

      Agarwal R A, Gupta A K, De D. Cryst. Grwoth Des. , 2019, 19(3): 2010-2018
       

    17. [17]

      Gu J Z, Cai Y, Wen M, Shi Z F, Kirillov A M. Dalton Trans. , 2018, 47(40): 14327-14339
       

    18. [18]

      Gu J Z, Liang X X, Cui Y H, Wu J, Shi Z F, Kirillov A M. CrystEng-Comm, 2017, 19(18): 2570-2588
       

    19. [19]

      Chen J W, Li Y, Gu J Z, Kirillova M V, Kirillov A M. New J. Chem. , 2020, 44: 16082-16091
       

    20. [20]

      Li G, Xiao J, Zhang W. Green Chem. , 2012, 14: 2234-2242
       

    21. [21]

      Elhamifar D, Kazempoor S, Karimi B. Catal. Sci. Technol. , 2016, 6: 4318-4326
       

    22. [22]

      Dumbre D K, Mozammel T, Selvakannan P R, Hamid S B A, Choudhary V R, Bharagava S K. J. Colloid Interface Sci. , 2015, 441: 52-58
       

    23. [23]

      Wach A, Drozdek M, Dudek B, Szneler E, Kuśtrowski P. Catal. Commun. , 2015, 64: 52-57
       

    24. [24]

      Xue L P, Li Z H, Zhang T, Cui J J, Gao Y, and Yao J X. New J. Chem. , 2018, 42: 14203-14209
       

    25. [25]

      Zhai Z W, Yang S H, Lv Y R, Du C X, Li L K, Zang S Q. Dalton Trans. , 2019, 48(12): 4007-4014
       

    26. [26]

      Yao C, Zhou S L, Kang X J, Zhao Y, Yan R, Zhang Y, Wen L L. Inorg. Chem. , 2018, 57(17): 11157-11164
       

    27. [27]

      Miao Z C, Luan Y, Qi C, Ramella D. Dalton Trans. , 2016, 45(35): 13917-13924
       

    28. [28]

      Spek A L. Acta Crystallogr. Sect. C, 2015, 71(1): 9-18
       

    29. [29]

      Gu J Z, Wan S M, Cheng X Y, Kirillova M V, Kirillov A M. Cryst. Growth Des. , 2021, 21(5): 2876-2888
       

    30. [30]

      Gu J Z, Gao Z Q, Tang Y. Cryst. Growth Des. , 2012, 12(6): 3312-3323
       

    31. [31]

      GU W J, GU J Z. Chinese J. Inorg. Chem. , 2017, 33(2): 227-236
       

    32. [32]

      Laha B, Khullar S, Gogia A, Mandal S K. Dalton Trans. , 2020, 49(35): 12298-12310
       

    33. [33]

      Gu J Z, Cui Y H, Liang X X, Wu J, Lv D Y, Kirillov A M. Cryst. Growth Des. , 2016, 16(7): 4658-4670
       

    34. [34]

      Gu J Z, Wan S M, Dou W, Kirillov M V, Kirillov A M. Inorg. Chem. Front. , 2021, 8(5): 1229-1242
       

    35. [35]

      Song C Y, Li X H, Liu W, Cao Z Q, Ren Y Y, Zhou Q C, Zhang L. Synth. React. Inorg. Met. -Org. Chem. , 2016, 46(12): 1787-1791
       

    36. [36]

      Chand S, Pal S C, Mondal M, Hota S, Pal A, Sahoo R, Das M C. Cryst. Growth Des. , 2019, 19(9): 5343-5353
       

    37. [37]

      Loukopoulos E, Kostakis G E. J. Coord. Chem. , 2018, 71: 371-410
       

    38. [38]

      Karmakar A, Rúbio G M D M R, Guedes da Silva M F C, Pombeiro A J L. ChemistryOpen, 2018, 7: 865-877
       

    39. [39]

      Laha B, Khullar S, Gogia A, Mandal S K. Dalton Trans. , 2020, 49(37): 12298-12310
       

  • 加载中
    1. [1]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    8. [8]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    9. [9]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    12. [12]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    17. [17]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    18. [18]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    19. [19]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(6)
  • Abstract views(428)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return