Citation: Wen-Qin FENG, Chao LI, Kai-Yuan LIU, Ming-Yuan CAI, Mei-Qiang FAN. Effect of Potassium tert-Butoxide on Hydrogen Storage Properties of Mg(NH2)2-2LiH System[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(6): 1097-1105. doi: 10.11862/CJIC.2021.142 shu

Effect of Potassium tert-Butoxide on Hydrogen Storage Properties of Mg(NH2)2-2LiH System

Figures(9)

  • The hydrogen storage properties of Mg(NH2)2-2LiH system were significantly enhanced by adding a small amount of potassium tert-butoxide (C4H9OK). The 0.08 mol C4H9OK-added sample (Mg(NH2)2-2LiH-0.08C4H9OK) showed optimum hydrogen storage performances. The on-set dehydrogenation temperature of Mg(NH2)2-2LiH-0.08C4H9OK sample was only 70℃, which was 60℃ lower than that of pristine Mg(NH2)2-2LiH sample. After fully dehydrogenated at 130℃, the Mg(NH2)2-2LiH-0.08C4H9OK sample begined to absorb hydrogen at 50℃, which was 50℃ lower than the pristine sample. At 150℃, mass ratio of 3.82% of hydrogen can be rapidly released from the Mg(NH2)2-2LiH-0.08C4H9OK sample within 50 min. The fully dehydrogenated Mg(NH2)2-2LiH-0.08C4H9OK sample could absorb mass ratio of 4.11% hydrogen at 120℃ within 50 min. Adding C4H9OK decreases the dehydrogenation activation energy and reaction enthalpy of the Mg(NH2)2-2LiH system, and enhances the hydrogen desorption kinetic and thermodynamic properties. Mechanistic investigations indicate that C4H9OK acts catalytically to enhance the dehydrogenation properties before 180℃, then it participates in the reaction to generate Li3K(NH2)4 by further increasing the operating temperature.
  • 加载中
    1. [1]

      Schlapbach L, Züttel A. Nature, 2001, 414(6861): 353-358  doi: 10.1038/35104634

    2. [2]

      Yu X B, Tang Z W, Sun D L, Ouyang L Z, Zhu M. Prog. Mater. Sci. , 2017, 88: 1-48  doi: 10.1016/j.pmatsci.2017.03.001

    3. [3]

      Lin W P, Xiao X Z, Wang X C, Wong J W, Yao Z D, Chen M, Zheng J G, Hu Z C, Chen L X. J. Energy Chem. , 2020, 50(11): 296-306

    4. [4]

      Li S J, Zhu Y F, Liu Y N, Zhang Y, Lin H J, Zhang J G, Qiu W J, Li L Q. J. Alloys Compd. , 2020, 819: 153020  doi: 10.1016/j.jallcom.2019.153020

    5. [5]

      Gizer G, Puszkiel J, Cao H J, Pistidda C, Le T T, Dornheim M, Klassen Z. Int. J. Hydrogen Energy, 2019, 44(23): 11920-11929  doi: 10.1016/j.ijhydene.2019.03.133

    6. [6]

      Lin H J, Li H W, Murakami H, Akiba E. J. Alloys Compd. , 2018, 735: 1017-1022  doi: 10.1016/j.jallcom.2017.10.239

    7. [7]

      Garroni S, Santoru A, Cao H J, Dornheim M, Klassen T, Milanese C, Gennari F, Pistidda C. Energies, 2018, 11(5): 1027  doi: 10.3390/en11051027

    8. [8]

      RAO C S, ZHANG X, YANG J H, LIU Q, ZHOU Y F. Chinese J. Inorg. Chem. , 2019, 35(12): 2233-2242  doi: 10.11862/CJIC.2019.275
       

    9. [9]

      Zhang X, Ren Z H, Lu Y H, Yao J H, Gao M X, Liu Y F, Pan H G. ACS Appl. Mater. Interfaces, 2018, 10: 15767-15777  doi: 10.1021/acsami.8b04011

    10. [10]

      Tang Z W, Chen X W, Chen H, Wu L M, Yu X B. Angew. Chem. Int. Ed. , 2013, 52: 5832-5835  doi: 10.1002/anie.201301049

    11. [11]

      LI C, FAN M Q, CHEN H C, CHEN D, TIAN G L, SHU K Y. Prog. Chem. , 2018, 28: 1788-1797
       

    12. [12]

      Chen P, Xiong Z T, Luo J Z, Lin J Y, Tan K L. Nature, 2002, 420(6913): 302-304  doi: 10.1038/nature01210

    13. [13]

      Xiong Z T, Wu G T, Hu J J, Chen P. Adv. Mater. , 2004, 16(17): 522-1525

    14. [14]

      Luo W F. J. Alloys Compd. , 2004, 381: 284-287  doi: 10.1016/j.jallcom.2004.03.119

    15. [15]

      Xiong Z T, Hu J J, Wu G T, Chen P, Luo W F, Gross K, Wang J. J. Alloys Compd. , 2005, 398: 235-239  doi: 10.1016/j.jallcom.2005.02.010

    16. [16]

      Sudik A, Yang J, Halliday D, Wolverton C. J. Phys. Chem. C, 2007, 111(17): 6568-6573  doi: 10.1021/jp0683465

    17. [17]

      Liu Y F, Zhong K, Luo K, Gao M X, Pan H G, Wang Q D. J. Am. Chem. Soc. , 2009, 131(5): 1862-1870  doi: 10.1021/ja806565t

    18. [18]

      Xie L, Liu Y, Li G Q, Li X G. J. Phys. Chem. C, 2009, 113(32): 14523-14527  doi: 10.1021/jp904346x

    19. [19]

      Xia G L, Chen X W, Zhao Y, Li X G, Guo Z P, Jensen C M, Gu Q F, Yu X B. ACS Appl. Mater. Interfaces, 2017, 9: 15502-15509  doi: 10.1021/acsami.7b02589

    20. [20]

      Ma L P, Dai H B, Liang Y, Kang X D, Fang Z Z, Wang P J, Wang P, Cheng H M. J. Phys. Chem. C, 2008, 112(46): 18280-18285  doi: 10.1021/jp806680n

    21. [21]

      Wang J C, Li Z N, Li H L, Mi J, Lu F, Wang S M, Liu X P, Jiang L J. Rare Met. , 2010, 29(6): 621-624  doi: 10.1007/s12598-010-0181-5

    22. [22]

      Senes N, Albanesi L F, Garroni S, Santoru A, Pistidda C, Mulas G, Enzo S, Gennari F. J. Alloys Compd. , 2018, 765: 635-643  doi: 10.1016/j.jallcom.2018.06.262

    23. [23]

      Chen Y, Wang P, Liu C, Cheng H M. Int. J. Hydrogen Energy, 2007, 32(9): 1262-1268  doi: 10.1016/j.ijhydene.2006.07.019

    24. [24]

      Hu J J, Liu Y F, Wu G T, Xiong Z T, Chua Y S, Chen P. Chem. Mater. , 2008, 20(13): 4398-4402  doi: 10.1021/cm800584x

    25. [25]

      Zhang Y, Xiong Z T, Cao H J, Wu G T, Chen P. Int. J. Hydrogen Energy, 2014, 39: 1710-1718  doi: 10.1016/j.ijhydene.2013.11.008

    26. [26]

      Shukla V, Bhatnagar A, Singh S, Soni P K, Verma S K, Yadav T P, Shaz M A, Srivastava O N. Dalton Trans. , 2019, 48: 11391-11403  doi: 10.1039/C9DT02270H

    27. [27]

      Qiu S J, Ma X Y, Wang E, Chu H L, Huot J, Zou Y J, Xiang C L, Xu F, Sun L X. J. Alloys Compd. , 2017, 704: 44-50  doi: 10.1016/j.jallcom.2017.02.045

    28. [28]

      Wang J H, Liu T, Wu G T, Li W, Liu Y F, Araujo C M, Scheicher R H, Blomqvist A, Ahuja R, Xiong Z T, Yang P, Gao M X, Pan H G, Chen P. Angew. Chem. Int. Ed. , 2010, 48(32): 5828-5832

    29. [29]

      Li C, Liu Y F, Ma R J, Zhang X, Li Y, Gao M X, Pan H G. ACS Appl. Mater. Interfaces, 2014, 6(19): 17024-17033  doi: 10.1021/am504592x

    30. [30]

      Zhang J X, Wang Y Q, Zhang M, Leng Z H, Gao M X, Hu J J, Liu Y F, Pan H G. RSC Adv. , 2017, 7(48): 30357-30364  doi: 10.1039/C7RA05166B

    31. [31]

      Durojaiye T, Hayes J, Goudy A. Int. J. Hydrogen Energy, 2015, 40(5): 2266-2273  doi: 10.1016/j.ijhydene.2014.12.056

    32. [32]

      Liu Y F, Li C, Li B, Gao M X, Pan H G. J. Phys. Chem. C, 2013, 117(2): 866-875  doi: 10.1021/jp3107414

    33. [33]

      Liang C. Liu Y F, Gao M X, Pan H G. J. Mater. Chem. A, 2013, 1(16): 5031-5036

    34. [34]

      Cui J R, Zhang W J, Cao H J, Chen P. J. Energy Chem. , 2020, 50: 358-364  doi: 10.1016/j.jechem.2020.03.067

    35. [35]

      Li C, Li C L, Fan M Q, Chen H C, Shu K Y, Zhang Y, Gao M X, Liu Y F, Pan H G. J. Energy Chem. , 2019, 35: 37-43  doi: 10.1016/j.jechem.2018.09.014

    36. [36]

      Gu J, Gao M X, Pan H G, Liu Y F, Li B, Yang Y J, Liang C, Fu H L, Guo Z X. Energy Environ. Sci. , 2013, 6(3): 847-858  doi: 10.1039/c2ee24121h

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

Metrics
  • PDF Downloads(1)
  • Abstract views(621)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return