Citation: Lan MA, Peng-Yuan QI, Lei MA, Shi-Yu DAI, Xiao-Chen XU, Yang LIU. Effect of Different Activation Energies of Crystal Growth on Luminescent Properties and Microstructure of SrZrO3: Ce[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(6): 968-976. doi: 10.11862/CJIC.2021.123 shu

Effect of Different Activation Energies of Crystal Growth on Luminescent Properties and Microstructure of SrZrO3: Ce

  • Corresponding author: Peng-Yuan QI, qipengyuan@126.com
  • Received Date: 5 August 2020
    Revised Date: 16 March 2021

Figures(9)

  • SrZrO3: Ce nanoparticles were prepared by reverse coprecipitation method with different precipitants. The phase, morphology, luminescence intensity and sintering densification of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA). The thermal analysis kinetics of different precursors were discussed. The results showed that the prismatic and nearly spherical SrZrO3: Ce particles with good dispersion were obtained by calcining the precursors prepared with single phase and multiphase precipitants at 1 000℃ for 2 h, with the particle sizes of about 80 and 60 nm, respectively. Using Doyle Ozawa integral method and Kissinger differential method, the average apparent activation energies in different reaction stages of precursors prepared with single phase and multiphase precipitants were 94.18, 69.39, 255.72 kJ·mol-1 and 90.46, 51.03, 232.35 kJ·mol-1, respectively. The activation energies of crystal growth: Esingle phase=27.97 kJ·mol-1 and Emultiphase=22.53 kJ·mol-1, respectively. The apparent activation energy and grain growth activation energy of the latter were lower than those of the former, which indicates that the sample prepared with multiphase precipitant reduces the synthesis energy and improves the particle activity, and its luminous intensity was obviously better than that of the sample prepared with single phase precipitant. After vacuum sintering at 1 760℃ for 4 h, the sample prepared with multiphase precipitant had uniform grain size and achieved densification.
  • 加载中
    1. [1]

      Manish K M, Vikas D, Mishra P M, Isharat K. Mater. Today: Proc. , 2019, 18(7): 4392-4397

    2. [2]

      Perumal R N, Athikesavan V. J. Mater. Sci. : Mater. Electron. , 2020, 31(5): 4092-4105  doi: 10.1007/s10854-020-02956-0

    3. [3]

      Cheng K M, Xu H X, Zhang L J, Du Y, Zhou J X, Tang S Q, Chen M. J. Electron. Mater. , 2019, 48(9): 5510-5515  doi: 10.1007/s11664-019-07236-0

    4. [4]

      Rai D P, Sandeep, Shankar A, Sakhya A P, Sinha T P, Merabet B, Musa S H M, Henata R K, Boochani A, Solaymani S. Mater. Chem. Phys. , 2017, 186: 620-626  doi: 10.1016/j.matchemphys.2016.11.045

    5. [5]

      Fukushima H, Nakauchi D, Kawaguchi N, Yannagida T. Sens. Mater. , 2019, 31(4): 1273-1280

    6. [6]

      Gu S, Zhang S, Jia Y, Li W, Yan J. J. Alloys Compd. , 2017, 728: 10-18  doi: 10.1016/j.jallcom.2017.08.279

    7. [7]

      Chou J T, Inoue Y, Kawabata T, Matsuda J, Sasaki K. J. Electrochem. Soc. , 2018, 165(11): 959-965  doi: 10.1149/2.0551811jes

    8. [8]

      Leonard K, Okuyama Y, Takamura Y, Lee Y S, Miyazaki K, Ivanova M, Meulenberg W, Matsumoto H. J. Mater. Chem. A, 2018, 6: 19113  doi: 10.1039/C8TA04019B

    9. [9]

      Venugopal M, Kumar H P, Jayakrishnan R. J. Electroceram. , 2020, 44: 163-172  doi: 10.1007/s10832-020-00207-6

    10. [10]

      Liu C Y, Tseung Y T. J. Phys. D: Appl. Phys. , 2007, 40(7): 2157-2161  doi: 10.1088/0022-3727/40/7/045

    11. [11]

      Aminzare M, Amoozegar Z, Sadrnezhaad S K. Mater. Res. Bull. , 2012, 47(11): 3586-3591  doi: 10.1016/j.materresbull.2012.06.060

    12. [12]

      QIU Y P, ZHANG X W, HAN G R. Rare Metal Materials and Engineering, 2006, 35(2): 190-193
       

    13. [13]

      Laloue N, Couenne F, Gorrec Y L, Kohl M, Tanguy D, Tayakout M. Chem. Eng. Sci. , 2007, 62(23): 6604-6614  doi: 10.1016/j.ces.2007.07.039

    14. [14]

      Ji Y M, Jiang D Y, Wu Z H, Fen T, Shi J L. Mater. Res. Bull. , 2005, 40(9): 1521-1526  doi: 10.1016/j.materresbull.2005.04.026

    15. [15]

      Loef E V V, Wang Y, Miller S R, Brecher C, Rhodes W H, Baldoni G, Topping S, Lingertat H, Sarin V K, Shah K S. Opt. Mater. , 2010, 33(1): 84-90  doi: 10.1016/j.optmat.2010.08.013

    16. [16]

      Tadao S. Monodispersed P. Monodispersed Particle. Japan: Tohoku University, 2000: 75-82

    17. [17]

      Shi Y, Chen J Y, Shi J L. Mater. Sci. Forum, 2005, 492: 101-108

    18. [18]

      Zoraga M, Kahruman C, Yusufoglu I. Hydrometallurgy, 2016, 163: 120-129  doi: 10.1016/j.hydromet.2016.03.021

    19. [19]

      Tong Y P, Zhao S B, Feng W F. J. Alloys Compd. , 2013, 550: 268-272  doi: 10.1016/j.jallcom.2012.09.004

    20. [20]

      Tiwari N, Kuraria R K, Kuraria S R, Tamrakar R K. J. Radiat. Res. Appl. Sci. , 2015, 8(1): 68-76  doi: 10.1016/j.jrras.2014.11.002

    21. [21]

      Gillani S S A, Ahmad R, Zeba I, Islah U D, Siddique M. Philos. Mag. , 2019, 23: 1-13

    22. [22]

      Zhang J, Wang W Z, Wang T L, Jiang L L, Wang N, Sun D, Zhao X M, Wang M G, Qi Y. J. Alloys Compd. , 2020, 858: 157650

    23. [23]

      Farooq U, Naz F, Phul R, Pandit N A, Jain S K, Ahmad T. J. Nanosci. Nanotechnol. , 2020, 20(6): 3770-3779  doi: 10.1166/jnn.2020.17516

    24. [24]

      Lim H, Lim J, Jang S, Lee Y S. J. Adv. Ceram. , 2020, 9(4): 413-423  doi: 10.1007/s40145-020-0381-x

    25. [25]

      Hsu Y W, Yang K H, Yeh S W, Wang M C. J. Alloys Compd. , 2013, 555(5): 82-87

  • 加载中
    1. [1]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    2. [2]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    6. [6]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    7. [7]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    8. [8]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    9. [9]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    10. [10]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    11. [11]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    19. [19]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(1)
  • Abstract views(968)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return