Citation: Lan MA, Peng-Yuan QI, Lei MA, Shi-Yu DAI, Xiao-Chen XU, Yang LIU. Effect of Different Activation Energies of Crystal Growth on Luminescent Properties and Microstructure of SrZrO3: Ce[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(6): 968-976. doi: 10.11862/CJIC.2021.123 shu

Effect of Different Activation Energies of Crystal Growth on Luminescent Properties and Microstructure of SrZrO3: Ce

  • Corresponding author: Peng-Yuan QI, qipengyuan@126.com
  • Received Date: 5 August 2020
    Revised Date: 16 March 2021

Figures(9)

  • SrZrO3: Ce nanoparticles were prepared by reverse coprecipitation method with different precipitants. The phase, morphology, luminescence intensity and sintering densification of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA). The thermal analysis kinetics of different precursors were discussed. The results showed that the prismatic and nearly spherical SrZrO3: Ce particles with good dispersion were obtained by calcining the precursors prepared with single phase and multiphase precipitants at 1 000℃ for 2 h, with the particle sizes of about 80 and 60 nm, respectively. Using Doyle Ozawa integral method and Kissinger differential method, the average apparent activation energies in different reaction stages of precursors prepared with single phase and multiphase precipitants were 94.18, 69.39, 255.72 kJ·mol-1 and 90.46, 51.03, 232.35 kJ·mol-1, respectively. The activation energies of crystal growth: Esingle phase=27.97 kJ·mol-1 and Emultiphase=22.53 kJ·mol-1, respectively. The apparent activation energy and grain growth activation energy of the latter were lower than those of the former, which indicates that the sample prepared with multiphase precipitant reduces the synthesis energy and improves the particle activity, and its luminous intensity was obviously better than that of the sample prepared with single phase precipitant. After vacuum sintering at 1 760℃ for 4 h, the sample prepared with multiphase precipitant had uniform grain size and achieved densification.
  • 加载中
    1. [1]

      Manish K M, Vikas D, Mishra P M, Isharat K. Mater. Today: Proc. , 2019, 18(7): 4392-4397

    2. [2]

      Perumal R N, Athikesavan V. J. Mater. Sci. : Mater. Electron. , 2020, 31(5): 4092-4105  doi: 10.1007/s10854-020-02956-0

    3. [3]

      Cheng K M, Xu H X, Zhang L J, Du Y, Zhou J X, Tang S Q, Chen M. J. Electron. Mater. , 2019, 48(9): 5510-5515  doi: 10.1007/s11664-019-07236-0

    4. [4]

      Rai D P, Sandeep, Shankar A, Sakhya A P, Sinha T P, Merabet B, Musa S H M, Henata R K, Boochani A, Solaymani S. Mater. Chem. Phys. , 2017, 186: 620-626  doi: 10.1016/j.matchemphys.2016.11.045

    5. [5]

      Fukushima H, Nakauchi D, Kawaguchi N, Yannagida T. Sens. Mater. , 2019, 31(4): 1273-1280

    6. [6]

      Gu S, Zhang S, Jia Y, Li W, Yan J. J. Alloys Compd. , 2017, 728: 10-18  doi: 10.1016/j.jallcom.2017.08.279

    7. [7]

      Chou J T, Inoue Y, Kawabata T, Matsuda J, Sasaki K. J. Electrochem. Soc. , 2018, 165(11): 959-965  doi: 10.1149/2.0551811jes

    8. [8]

      Leonard K, Okuyama Y, Takamura Y, Lee Y S, Miyazaki K, Ivanova M, Meulenberg W, Matsumoto H. J. Mater. Chem. A, 2018, 6: 19113  doi: 10.1039/C8TA04019B

    9. [9]

      Venugopal M, Kumar H P, Jayakrishnan R. J. Electroceram. , 2020, 44: 163-172  doi: 10.1007/s10832-020-00207-6

    10. [10]

      Liu C Y, Tseung Y T. J. Phys. D: Appl. Phys. , 2007, 40(7): 2157-2161  doi: 10.1088/0022-3727/40/7/045

    11. [11]

      Aminzare M, Amoozegar Z, Sadrnezhaad S K. Mater. Res. Bull. , 2012, 47(11): 3586-3591  doi: 10.1016/j.materresbull.2012.06.060

    12. [12]

      QIU Y P, ZHANG X W, HAN G R. Rare Metal Materials and Engineering, 2006, 35(2): 190-193
       

    13. [13]

      Laloue N, Couenne F, Gorrec Y L, Kohl M, Tanguy D, Tayakout M. Chem. Eng. Sci. , 2007, 62(23): 6604-6614  doi: 10.1016/j.ces.2007.07.039

    14. [14]

      Ji Y M, Jiang D Y, Wu Z H, Fen T, Shi J L. Mater. Res. Bull. , 2005, 40(9): 1521-1526  doi: 10.1016/j.materresbull.2005.04.026

    15. [15]

      Loef E V V, Wang Y, Miller S R, Brecher C, Rhodes W H, Baldoni G, Topping S, Lingertat H, Sarin V K, Shah K S. Opt. Mater. , 2010, 33(1): 84-90  doi: 10.1016/j.optmat.2010.08.013

    16. [16]

      Tadao S. Monodispersed P. Monodispersed Particle. Japan: Tohoku University, 2000: 75-82

    17. [17]

      Shi Y, Chen J Y, Shi J L. Mater. Sci. Forum, 2005, 492: 101-108

    18. [18]

      Zoraga M, Kahruman C, Yusufoglu I. Hydrometallurgy, 2016, 163: 120-129  doi: 10.1016/j.hydromet.2016.03.021

    19. [19]

      Tong Y P, Zhao S B, Feng W F. J. Alloys Compd. , 2013, 550: 268-272  doi: 10.1016/j.jallcom.2012.09.004

    20. [20]

      Tiwari N, Kuraria R K, Kuraria S R, Tamrakar R K. J. Radiat. Res. Appl. Sci. , 2015, 8(1): 68-76  doi: 10.1016/j.jrras.2014.11.002

    21. [21]

      Gillani S S A, Ahmad R, Zeba I, Islah U D, Siddique M. Philos. Mag. , 2019, 23: 1-13

    22. [22]

      Zhang J, Wang W Z, Wang T L, Jiang L L, Wang N, Sun D, Zhao X M, Wang M G, Qi Y. J. Alloys Compd. , 2020, 858: 157650

    23. [23]

      Farooq U, Naz F, Phul R, Pandit N A, Jain S K, Ahmad T. J. Nanosci. Nanotechnol. , 2020, 20(6): 3770-3779  doi: 10.1166/jnn.2020.17516

    24. [24]

      Lim H, Lim J, Jang S, Lee Y S. J. Adv. Ceram. , 2020, 9(4): 413-423  doi: 10.1007/s40145-020-0381-x

    25. [25]

      Hsu Y W, Yang K H, Yeh S W, Wang M C. J. Alloys Compd. , 2013, 555(5): 82-87

  • 加载中
    1. [1]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(1)
  • Abstract views(664)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return