Citation: Dan ZHAO, Zai-Tian LIAO, Wang ZHANG, Zhi-Zhou CHEN, Wei-Yin SUN. Progress in Functional Metal-Organic Frameworks for Catalytic Conversion of Carbon Dioxide[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(7): 1153-1176. doi: 10.11862/CJIC.2021.121 shu

Progress in Functional Metal-Organic Frameworks for Catalytic Conversion of Carbon Dioxide

Figures(32)

  • Carbon dioxide (CO2), as a major greenhouse gas, causes global warming and ocean acidification, and is also an important C1 resource at the same time. It is of great significance for high efficiently and selectively conversion of CO2 into high value-added chemicals using desired catalysts under mild conditions to mitigate the negative impact of CO2 on climate change and reduce the dependence on fossil energy. Metal-organic frameworks (MOFs), as a new kind of porous crystalline materials, are attractive heterogeneous catalysts due to their reusability of heterogenous as well as high selectivity and acitivity of homogenous catalysts. This review mainly focuses on the up-to-date developments of functional MOFs catalysts with emphasis on their architecture characteristics and applications in catalytic conversion of CO2. Recent research progress together with the prospect and outlook of MOFs in this field will be introduced.
  • 加载中
    1. [1]

      Cui X L, Chen K J, Xing H B, Yang Q W, Krishna R, Bao Z B, Wu H, Zhou W, Dong X L, Han Y, Li B, Ren Q L, Zaworotko M J, Chen B L. Science, 2016, 353: 141-144  doi: 10.1126/science.aaf2458

    2. [2]

      GAO L L, LI M X, DU Y E, CHEN Y Q. Chinese J. Inorg. Chem. , 2020, 36(12): 2359-2366  doi: 10.11862/CJIC.2020.249

    3. [3]

      Li B Y, Dong X L, Wang H, Ma D X, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, Thonhauser T, Chabal Y J, Han Y, Li J. Nat. Commun. , 2017, 8: 485-493  doi: 10.1038/s41467-017-00526-3

    4. [4]

      Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Adv. Mater. , 2018, 30: 1704303  doi: 10.1002/adma.201704303

    5. [5]

      Banerjee D, Simon C M, Plonka A M, Motkuri R K, Liu J, Chen X Y, Smit B, Parise J B, Haranczyk M, Thallapally P K. Nat. Commun. , 2016, 7: 11831  doi: 10.1038/ncomms11831

    6. [6]

      Yin Z, Wan S, Yang J, Kurmoo M, Zeng M H. Coord. Chem. Rev. , 2019, 378: 500-512  doi: 10.1016/j.ccr.2017.11.015

    7. [7]

      Seidi F, Jenjob R, Crespy D. Chem. Rev. , 2018, 118: 3965-4036  doi: 10.1021/acs.chemrev.8b00006

    8. [8]

      Adil K, Belmabkhout Y, Pillai R S, Cadiau A, Bhatt P M, Assen A H, Maurin G, Eddaoudi M. Chem. Soc. Rev. , 2017, 46: 3402-3430  doi: 10.1039/C7CS00153C

    9. [9]

      Cui Y J, Li B, He H J, Zhou W, Chen B L, Qian G D. Acc. Chem. Res. , 2016, 49: 483-493  doi: 10.1021/acs.accounts.5b00530

    10. [10]

      Zhao D, Liu X H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S I, Lu Y, Sun W Y. J. Mater. Chem. A, 2017, 5: 15797-15807  doi: 10.1039/C7TA03849F

    11. [11]

      Dong J, Zhao D, Lu Y, Sun W Y. J. Mater. Chem. A, 2019, 7: 22744-22767  doi: 10.1039/C9TA07022B

    12. [12]

    13. [13]

      Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Coord. Chem. Rev. , 2019, 378: 262-280  doi: 10.1016/j.ccr.2018.02.009

    14. [14]

      Ding M, Flaig R W, Jiang H L, Yaghi O M. Chem. Soc. Rev. , 2019, 48: 2783-2828  doi: 10.1039/C8CS00829A

    15. [15]

      He H, Li R, Yang Z, Chai L, Jin L, Alhassan S I, Ren L, Wang H, Huang L. Catal. Today, 2020, DOI: 10.1016/j.cattod.2020.02.033

    16. [16]

      Chughtai A H, Ahmad N, Younus H A, Laypkovc A, Verpoort F. Chem. Soc. Rev. , 2015, 44: 6804-6849  doi: 10.1039/C4CS00395K

    17. [17]

      Huang Y B, Liang J, Wang X S, Cao R. Chem. Soc. Rev. , 2017, 46: 126-157  doi: 10.1039/C6CS00250A

    18. [18]

      Wu C D, Zhao M. Adv. Mater. , 2017, 29: 1605446  doi: 10.1002/adma.201605446

    19. [19]

      Guo F, Yang S Z, Liu Y, Wang P, Huang J, Sun W Y. ACS Catal. , 2019, 9: 8464-8470  doi: 10.1021/acscatal.9b02126

    20. [20]

      Han Y Q, Xu H T, Su Y Q, Xu Z L, Wang K F, Wang W Z. J. Catal. , 2019, 370: 70-78  doi: 10.1016/j.jcat.2018.12.005

    21. [21]

      Wang X K, Liu J, Zhang L, Dong L Z, Li S L, Kan Y H, Li D S, Lan Y Q. ACS Catal. , 2019, 9: 1726-1732  doi: 10.1021/acscatal.8b04887

    22. [22]

      Li N, Liu J, Dong B X, Lan Y Q. Angew. Chem. Int. Ed. , 2020, 59: 20779-20793  doi: 10.1002/anie.202008054

    23. [23]

      Seo U R, Chung Y K. Green Chem. , 2017, 19: 803-808  doi: 10.1039/C6GC02934E

    24. [24]

      Soitys-Brzostek K, Terlecki M, Sokotowski K, Lewiński J. Coord. Chem. Rev. , 2017, 334: 199-231  doi: 10.1016/j.ccr.2016.10.008

    25. [25]

      Jutz F, Andanson J M, Baiker A. Chem. Rev. , 2011, 111: 322-353  doi: 10.1021/cr100194q

    26. [26]

      Pulla S, Felton C M, Ramidi P, Gartia Y, Ali N, Nasini U B, Ghosh A. J. CO2 Util. , 2013, 2: 49-57  doi: 10.1016/j.jcou.2013.07.005

    27. [27]

      Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. , 2015, 6: 5933  doi: 10.1038/ncomms6933

    28. [28]

      Wang Q Q, Luo N, Wang X D, Ao Y F, Chen Y F, Liu J M, Su C Y, Wang D X, Wang M X. J. Am. Chem. Soc. , 2017, 139: 635-638  doi: 10.1021/jacs.6b12386

    29. [29]

      Maina J W, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée L F. Mater. Horiz. , 2017, 4: 345-361  doi: 10.1039/C6MH00484A

    30. [30]

      Zhao D, Liu X H, Shi Z Z, Zhu C D, Zhao Y, Wang P, Sun W Y. Dalton Trans. , 2016, 45: 14184-14190  doi: 10.1039/C6DT02755E

    31. [31]

      Lu X B, Darensbourg D J. Chem. Soc. Rev. , 2012, 41: 1462  doi: 10.1039/C1CS15142H

    32. [32]

      Chang Z, Jing X, He C, Liu X, Duan C Y. ACS Catal. , 2018, 8: 1384-1391  doi: 10.1021/acscatal.7b02844

    33. [33]

      Cai G R, Ding M L, Wu Q Y, Jiang H L. Natl. Sci. Rev. , 2020, 7: 37-45  doi: 10.1093/nsr/nwz147

    34. [34]

      Song J L, Zhang Z F, Hu S Q, Wu T B, Jiang T, Han B X. Green Chem. , 2009, 11: 1031-1036  doi: 10.1039/b902550b

    35. [35]

      Huang Y B, Liang J, Wang X S, Cao R. Chem. Soc. Rev. , 2017, 46: 126-157  doi: 10.1039/C6CS00250A

    36. [36]

      Cho H Y, Yang D A, Kim J, Jeong S Y, Ahn W S. Catal. Today, 2012, 185: 35-40  doi: 10.1016/j.cattod.2011.08.019

    37. [37]

      Feng D, Chung W C, Wei Z, Gu Z Y, Jiang H L, Chen Y P, Darensbourg D J, Zhou H C. J. Am. Chem. Soc. , 2013, 135: 17105-17110  doi: 10.1021/ja408084j

    38. [38]

      Gao W Y, Wojtas L, Ma S. Chem. Comm. , 2014, 50: 5316-5318  doi: 10.1039/C3CC47542E

    39. [39]

      Gao W Y, Chen Y, Niu Y, Williams K, Cash L, Perez P J, Wojtas L, Cai F, Chen Y S, Ma S. Angew. Chem. Int. Ed. , 2014, 53: 2615-2619  doi: 10.1002/anie.201309778

    40. [40]

      Li P Z, Wang X J, Liu J, Lim J S, Zou R, Zhao Y. J. Am. Chem. Soc. , 2016, 138: 2142-2145  doi: 10.1021/jacs.5b13335

    41. [41]

      Zhou Z, He C, Yang L, Wang Y F, Liu T, Duan C Y. ACS Catal. , 2017, 7: 2248-2256  doi: 10.1021/acscatal.6b03404

    42. [42]

      Li J R, Sculley J, Zhou H C. Chem. Rev. , 2012, 112: 869-943  doi: 10.1021/cr200190s

    43. [43]

      Ren Y W, Shi Y C, Chen J X, Yang S R, Qi C R, Jiang H F. RSC Adv. , 2013, 3: 2167-2170  doi: 10.1039/c2ra22550f

    44. [44]

      Beyzavi M H, Klet R C, Tussupbayev S, Borycz J, Vermeulen N A, Cramer C J, Stoddart J F, Hupp J T, Farha O K. J. Am. Chem. Soc. , 2014, 136: 15861-15864  doi: 10.1021/ja508626n

    45. [45]

      Babu R, Kathalikkattil A C, Roshan R, Tharun J, Kim D W, Park D W. Green Chem. , 2016, 18: 232-242  doi: 10.1039/C5GC01763G

    46. [46]

      Zhao D, Liu X H, Zhu C D, Kang Y S, Wang P, Shi Z Z, Lu Y, Sun W Y. ChemCatChem, 2017, 9: 4598-4606  doi: 10.1002/cctc.201701190

    47. [47]

      Zhao D, Liu X H, Guo J H, Xu H J, Zhao Y, Lu Y, Sun W Y. Inorg. Chem. , 2018, 57: 2695-2704  doi: 10.1021/acs.inorgchem.7b03099

    48. [48]

      Ding M, Chen S, Liu X Q, Sun L B, Lu J, Jiang H L. ChemSusChem, 2017, 10: 1898-1903  doi: 10.1002/cssc.201700245

    49. [49]

      Yang Q, Yang C C, Lin C H, Jiang H L. Angew. Chem. Int. Ed. , 2019, 58: 3511-3515  doi: 10.1002/anie.201813494

    50. [50]

      Delavari M, Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R. Appl. Organometal. Chem. , 2017, 31: e3656  doi: 10.1002/aoc.3656

    51. [51]

      Yuan S, Zou L, Li H, Chen Y P, Qin J, Zhang Q, Lu W, Hall M B, Zhou H C. Angew. Chem. Int. Ed. , 2016, 55: 10776-10780  doi: 10.1002/anie.201604313

    52. [52]

      Ding M, Jiang H L. ACS Catal. , 2018, 8: 3194-3201  doi: 10.1021/acscatal.7b03404

    53. [53]

      Han Qiu X, Qi B, Ren W M, He C, Niu J Y, Duan C Y. Nat. Commun. , 2015, 6: 10007  doi: 10.1038/ncomms10007

    54. [54]

      Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev. , 2011, 40: 3703-3727  doi: 10.1039/c1cs15008a

    55. [55]

      Cui W G, Zhang G Y, Hu T L, Bu X H. Chem. Soc. Rev. , 2019, 387: 79-120

    56. [56]

      Li D D, Kassymova M, Cai X C, Zang S Q, Jiang H L. Coord. Chem. Rev. , 2020, 412: 213262  doi: 10.1016/j.ccr.2020.213262

    57. [57]

      Xiao J D, Jiang H L. Acc. Chem. Res. , 2019, 52: 356-366  doi: 10.1021/acs.accounts.8b00521

    58. [58]

      XIAO D J, LI D D, JIANG H L. Sci. Sinica Chimica, 2019, 48(9): 1058-1057
       

    59. [59]

      Jessop P G, Joó F, Tai C C. Coord. Chem. Rev. , 2004, 248: 2425-2442  doi: 10.1016/j.ccr.2004.05.019

    60. [60]

      Ye J, Johnson J K. ACS Catal. , 2015, 5: 2921-2928  doi: 10.1021/acscatal.5b00396

    61. [61]

      Ye J, Johnson J K. ACS Catal. , 2015, 5: 6219-6229  doi: 10.1021/acscatal.5b01191

    62. [62]

      Ye J, Johnson J K. Catal. Sci. Technol. , 2016, 6: 8392-8405  doi: 10.1039/C6CY01245K

    63. [63]

      Rungtaweevoranit B, Baek J, Araujo J R, Archanjo B S, Choi K M, Yaghi O M, Somorjai G A. Nano Lett. , 2016, 16: 7645-7649  doi: 10.1021/acs.nanolett.6b03637

    64. [64]

      Zhang W B, Wang L B, Wang K W, Khan M U, Wang M L, Li H L, Zeng J. Small, 2017, 13: 1602583  doi: 10.1002/smll.201602583

    65. [65]

      Li Z H, Rayder T M, Luo L S, Byers J A, Tsung C K. J. Am. Chem. Soc. , 2018, 140: 8082-8085  doi: 10.1021/jacs.8b04047

    66. [66]

      Li L, Cai X, Chen S, Zhang H, Zhang K H L, Hong J, Chen B, Kuo D H, Wang W. ChemSusChem, 2018, 11: 1040-1047  doi: 10.1002/cssc.201800016

    67. [67]

      Lü J, Cao R. Angew. Chem. Int. Ed. , 2016, 55: 9474-9480  doi: 10.1002/anie.201602116

    68. [68]

      Wang S B, Wang X C. Small, 2015, 11: 3097-3112  doi: 10.1002/smll.201500084

    69. [69]

      Guo F, Guo J H, Wang P, Kang Y S, Liu L, Zhao J, Sun W Y. Chem. Sci. , 2019, 10: 4834-4838  doi: 10.1039/C8SC05060K

    70. [70]

      Wei Y P, Liu Y, Guo F, Dao X Y, Sun W Y. Dalton Trans. , 2019, 48: 8221-8226  doi: 10.1039/C9DT01767D

    71. [71]

      Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew. Chem. Int. Ed. , 2012, 51: 3364-3367  doi: 10.1002/anie.201108357

    72. [72]

      Magdesieva T V, Yamamoto T, Tryk D A, Fujishima A. J. Electrochem. Soc. , 2002, 149: D89-D95  doi: 10.1149/1.1475690

    73. [73]

      Horiuchi Y, Toyao T, Miyahara K, Lionet Zakary L, Van D D, Kamata Y, Kim T H, Lee S W, Matsuoka M. Chem. Commun. , 2016, 52: 5190-5193  doi: 10.1039/C6CC00730A

    74. [74]

      Chi L, Xu Q, Liang X Y, Wang J D, Su X T. Small, 2016, 12: 1351-1358  doi: 10.1002/smll.201503526

    75. [75]

      Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal. , 2014, 4: 4254-4260  doi: 10.1021/cs501169t

    76. [76]

      Dao X Y, Guo J H, Wei Y P, Guo F, Liu Y, Sun W Y. Inorg. Chem. , 2019, 58: 8517-8524  doi: 10.1021/acs.inorgchem.9b00824

    77. [77]

      Dao X Y, Xie X F, Guo J H, Zhang X Y, Kang Y S, Sun W Y. ACS Appl. Energy Mater. , 2020, 3: 3946-3954  doi: 10.1021/acsaem.0c00352

    78. [78]

      Dao X Y, Guo J H, Zhang X Y, Wang S Q, Cheng X M, Sun W Y. J. Mater. Chem. A, 2020, 8: 25850-25856  doi: 10.1039/D0TA10278D

    79. [79]

      Wei Y P, Yang S, Wang P, Guo J H, Huang J, Sun W Y. Dalton Trans. , 2021, 50: 384-390  doi: 10.1039/D0DT03500A

    80. [80]

      Wang C, Xie Z G, deKrafft K E, Lin W B. J. Am. Chem. Soc. , 2011, 133: 13445-13454  doi: 10.1021/ja203564w

    81. [81]

      Zhang S Q, Li L N, Zhao S E, Sun Z H, Hong M C, Luo J H. J. Mater. Chem. A, 2015, 3: 15764-15768  doi: 10.1039/C5TA03322E

    82. [82]

      Lee Y, Kim S, Fei H, Kang J K, Cohen S M. Chem. Commun. , 2015, 51: 16549-16552  doi: 10.1039/C5CC04506A

    83. [83]

      Liu Y Y, Yang Y M, Sun Q L, Wang Z Y, Huang B B, Dai Y, Qin X Y, Zhang X Y. ACS Appl. Mater. Interfaces, 2013, 5: 7654-7658  doi: 10.1021/am4019675

    84. [84]

      Xu H Q, Hu J H, Wang D K, Li Z H, Zhang Q, Luo L, Yu S H, Jiang H L. J. Am. Chem. Soc. , 2015, 137: 13440-13443  doi: 10.1021/jacs.5b08773

    85. [85]

      Zhang H B, Wei J, Dong J C, Liu G G, Shi L, An P F, Zhao G X, Kong J T, Wang X J, Meng X G, Zhang J, Ye J H. Angew. Chem. Int. Ed. , 2016, 55: 14310-14314  doi: 10.1002/anie.201608597

    86. [86]

      Wang S B, Yao W S, Lin J L, Ding Z X, Wang X C. Angew. Chem. Int. Ed. , 2014, 53: 1034-1038  doi: 10.1002/anie.201309426

    87. [87]

      Wang S B, Lin J L, Wang X C. Phys. Chem. Chem. Phys. , 2014, 16: 14656-14660  doi: 10.1039/c4cp02173h

    88. [88]

      Wang S B, Wang X C. Appl. Catal. B, 2015, 162: 494-500  doi: 10.1016/j.apcatb.2014.07.026

    89. [89]

      Liu Q, Low Z X, Li L X, Razmjou A, Wang K, Yao J F, Wang H T. J. Mater. Chem. A, 2013, 1: 11563-11569  doi: 10.1039/c3ta12433a

    90. [90]

      Li R, Hu J H, Deng M S, Wang H L, Wang X J, Hu Y L, Jiang H L, Jiang J, Zhang Q, Xie Y, Xiong Y J. Adv. Mater. , 2014, 26: 4783-4788  doi: 10.1002/adma.201400428

    91. [91]

      Ma Y J, Tang Q, Sun W Y, Yao Z Y, Zhu W H, Li T, Wang J Y. Appl. Catal. B, 2020, 270: 118856  doi: 10.1016/j.apcatb.2020.118856

    92. [92]

      Guo F, Yang S Z, Liu Y, Wang P, Huang J, Sun W Y. ACS Catal. , 2019, 9: 8464-8470  doi: 10.1021/acscatal.9b02126

    93. [93]

      Guo F, Wei Y P, Wang S Q, Zhang X Y, Wang F M, Sun W Y. J. Mater. Chem. A, 2019, 7: 26490-26495  doi: 10.1039/C9TA10575A

    94. [94]

      Wang S Q, Zhang X Y, Dao X Y, Cheng X M, Sun W Y. ACS Appl. Nano Mater. , 2020, 3: 10437-10445  doi: 10.1021/acsanm.0c02312

    95. [95]

      Wu P Y, Guo X Y, Cheng L J, He C, Wang J, Duan C Y. Inorg. Chem. , 2016, 55: 8153-8159  doi: 10.1021/acs.inorgchem.6b01267

    96. [96]

      Froehlich J D, Kubiak C P. J. Am. Chem. Soc. , 2015, 137: 3565-3573  doi: 10.1021/ja512575v

    97. [97]

      Neri G, Forster M, Walsh J J, Robertson C M, Whittles T J, Farràs P, Cowan A J. Chem. Commun. , 2016, 52: 14200-14203  doi: 10.1039/C6CC08590C

    98. [98]

      Schneider J, Jia H, Kobiro K, Cabelli D E, Muckerman J T, Fujita E. Energ Environ. Sci. , 2012, 5: 9502-9510  doi: 10.1039/c2ee22528j

    99. [99]

      Liu J X, Wöll C. Chem. Soc. Rev. , 2017, 46: 5730-5770  doi: 10.1039/C7CS00315C

    100. [100]

      Qiao J L, Liu Y Y, Hong F, Zhang J J. Chem. Soc. Rev. , 2014, 43: 631-675  doi: 10.1039/C3CS60323G

    101. [101]

      Guo J H, Sun W Y. Appl. Catal. B, 2020, 275: 119154  doi: 10.1016/j.apcatb.2020.119154

    102. [102]

      Kumar R S, Kumar S S, Kulandainathana M A. Electrochem. Commun. , 2012, 25: 70-73  doi: 10.1016/j.elecom.2012.09.018

    103. [103]

      Kang X C, Zhu Q G, Sun X F, Hu J Y, Zhang J L, Liu Z M, Han B X. Chem. Sci. , 2016, 7: 266-273  doi: 10.1039/C5SC03291A

    104. [104]

      Choi I, Jung Y E, Yoo S J, Kim J Y, Kim H J, Lee C Y, Jang J H. J. Electrochem. Sci. Technol. , 2017, 8: 61-68  doi: 10.33961/JECST.2017.8.1.61

    105. [105]

      Hod I, Sampson M D, Deria P, Kubiak C P, Farha O K, Hupp J T. ACS Catal. , 2015, 5: 6302-6309  doi: 10.1021/acscatal.5b01767

    106. [106]

      Kornienko N, Zhao Y B, Kley C S, Zhu C H, Kim D, Lin S, Chang C J, Yaghi O M, Yang P D. J. Am. Chem. Soc. , 2015, 137: 14129-14135  doi: 10.1021/jacs.5b08212

    107. [107]

      Guo J H, Zhang X Y, Dao X Y, Sun W Y. ACS Appl. Nano Mater. , 2020, 3: 2625-2635  doi: 10.1021/acsanm.0c00007

    108. [108]

      Jiao L, Yang W J, Wan G, Zhang R, Zheng X S, Zhou H, Yu S H, Jiang H L. Angew. Chem. Int. Ed. , 2020, 59: 20589-20595  doi: 10.1002/anie.202008787

    109. [109]

      Gong Y N, Jiao L, Qian Y Y, Pan C Y, Zheng L R, Cai X C, Liu B, Yu S H, Jiang H L. Angew. Chem. Int. Ed. , 2020, 59: 2705-2709  doi: 10.1002/anie.201914977

    110. [110]

      Wang X Q, Chen Z, Zhao X Y, Yao T, Chen W X, You R, Zhao C M, Wu G, Wang J, Huang W X, Yang J L, Hong X, Wei S Q, Wu Y E, Li Y D. Angew. Chem. Int. Ed. , 2018, 57: 1944-1948  doi: 10.1002/anie.201712451

    111. [111]

      Ding M L, Cai X C, Jiang H L. Chem. Sci. , 2019, 10: 10209-10230  doi: 10.1039/C9SC03916C

    112. [112]

      Ding M L, Jiang H L. CCS Chem. , 2020, 2: 2740-2748

  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(134)
  • Abstract views(2766)
  • HTML views(1203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return