Citation: Dan ZHAO, Zai-Tian LIAO, Wang ZHANG, Zhi-Zhou CHEN, Wei-Yin SUN. Progress in Functional Metal-Organic Frameworks for Catalytic Conversion of Carbon Dioxide[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(7): 1153-1176. doi: 10.11862/CJIC.2021.121 shu

Progress in Functional Metal-Organic Frameworks for Catalytic Conversion of Carbon Dioxide

Figures(32)

  • Carbon dioxide (CO2), as a major greenhouse gas, causes global warming and ocean acidification, and is also an important C1 resource at the same time. It is of great significance for high efficiently and selectively conversion of CO2 into high value-added chemicals using desired catalysts under mild conditions to mitigate the negative impact of CO2 on climate change and reduce the dependence on fossil energy. Metal-organic frameworks (MOFs), as a new kind of porous crystalline materials, are attractive heterogeneous catalysts due to their reusability of heterogenous as well as high selectivity and acitivity of homogenous catalysts. This review mainly focuses on the up-to-date developments of functional MOFs catalysts with emphasis on their architecture characteristics and applications in catalytic conversion of CO2. Recent research progress together with the prospect and outlook of MOFs in this field will be introduced.
  • 加载中
    1. [1]

      Cui X L, Chen K J, Xing H B, Yang Q W, Krishna R, Bao Z B, Wu H, Zhou W, Dong X L, Han Y, Li B, Ren Q L, Zaworotko M J, Chen B L. Science, 2016, 353: 141-144  doi: 10.1126/science.aaf2458

    2. [2]

      GAO L L, LI M X, DU Y E, CHEN Y Q. Chinese J. Inorg. Chem. , 2020, 36(12): 2359-2366  doi: 10.11862/CJIC.2020.249

    3. [3]

      Li B Y, Dong X L, Wang H, Ma D X, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, Thonhauser T, Chabal Y J, Han Y, Li J. Nat. Commun. , 2017, 8: 485-493  doi: 10.1038/s41467-017-00526-3

    4. [4]

      Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Adv. Mater. , 2018, 30: 1704303  doi: 10.1002/adma.201704303

    5. [5]

      Banerjee D, Simon C M, Plonka A M, Motkuri R K, Liu J, Chen X Y, Smit B, Parise J B, Haranczyk M, Thallapally P K. Nat. Commun. , 2016, 7: 11831  doi: 10.1038/ncomms11831

    6. [6]

      Yin Z, Wan S, Yang J, Kurmoo M, Zeng M H. Coord. Chem. Rev. , 2019, 378: 500-512  doi: 10.1016/j.ccr.2017.11.015

    7. [7]

      Seidi F, Jenjob R, Crespy D. Chem. Rev. , 2018, 118: 3965-4036  doi: 10.1021/acs.chemrev.8b00006

    8. [8]

      Adil K, Belmabkhout Y, Pillai R S, Cadiau A, Bhatt P M, Assen A H, Maurin G, Eddaoudi M. Chem. Soc. Rev. , 2017, 46: 3402-3430  doi: 10.1039/C7CS00153C

    9. [9]

      Cui Y J, Li B, He H J, Zhou W, Chen B L, Qian G D. Acc. Chem. Res. , 2016, 49: 483-493  doi: 10.1021/acs.accounts.5b00530

    10. [10]

      Zhao D, Liu X H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S I, Lu Y, Sun W Y. J. Mater. Chem. A, 2017, 5: 15797-15807  doi: 10.1039/C7TA03849F

    11. [11]

      Dong J, Zhao D, Lu Y, Sun W Y. J. Mater. Chem. A, 2019, 7: 22744-22767  doi: 10.1039/C9TA07022B

    12. [12]

    13. [13]

      Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Coord. Chem. Rev. , 2019, 378: 262-280  doi: 10.1016/j.ccr.2018.02.009

    14. [14]

      Ding M, Flaig R W, Jiang H L, Yaghi O M. Chem. Soc. Rev. , 2019, 48: 2783-2828  doi: 10.1039/C8CS00829A

    15. [15]

      He H, Li R, Yang Z, Chai L, Jin L, Alhassan S I, Ren L, Wang H, Huang L. Catal. Today, 2020, DOI: 10.1016/j.cattod.2020.02.033

    16. [16]

      Chughtai A H, Ahmad N, Younus H A, Laypkovc A, Verpoort F. Chem. Soc. Rev. , 2015, 44: 6804-6849  doi: 10.1039/C4CS00395K

    17. [17]

      Huang Y B, Liang J, Wang X S, Cao R. Chem. Soc. Rev. , 2017, 46: 126-157  doi: 10.1039/C6CS00250A

    18. [18]

      Wu C D, Zhao M. Adv. Mater. , 2017, 29: 1605446  doi: 10.1002/adma.201605446

    19. [19]

      Guo F, Yang S Z, Liu Y, Wang P, Huang J, Sun W Y. ACS Catal. , 2019, 9: 8464-8470  doi: 10.1021/acscatal.9b02126

    20. [20]

      Han Y Q, Xu H T, Su Y Q, Xu Z L, Wang K F, Wang W Z. J. Catal. , 2019, 370: 70-78  doi: 10.1016/j.jcat.2018.12.005

    21. [21]

      Wang X K, Liu J, Zhang L, Dong L Z, Li S L, Kan Y H, Li D S, Lan Y Q. ACS Catal. , 2019, 9: 1726-1732  doi: 10.1021/acscatal.8b04887

    22. [22]

      Li N, Liu J, Dong B X, Lan Y Q. Angew. Chem. Int. Ed. , 2020, 59: 20779-20793  doi: 10.1002/anie.202008054

    23. [23]

      Seo U R, Chung Y K. Green Chem. , 2017, 19: 803-808  doi: 10.1039/C6GC02934E

    24. [24]

      Soitys-Brzostek K, Terlecki M, Sokotowski K, Lewiński J. Coord. Chem. Rev. , 2017, 334: 199-231  doi: 10.1016/j.ccr.2016.10.008

    25. [25]

      Jutz F, Andanson J M, Baiker A. Chem. Rev. , 2011, 111: 322-353  doi: 10.1021/cr100194q

    26. [26]

      Pulla S, Felton C M, Ramidi P, Gartia Y, Ali N, Nasini U B, Ghosh A. J. CO2 Util. , 2013, 2: 49-57  doi: 10.1016/j.jcou.2013.07.005

    27. [27]

      Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. , 2015, 6: 5933  doi: 10.1038/ncomms6933

    28. [28]

      Wang Q Q, Luo N, Wang X D, Ao Y F, Chen Y F, Liu J M, Su C Y, Wang D X, Wang M X. J. Am. Chem. Soc. , 2017, 139: 635-638  doi: 10.1021/jacs.6b12386

    29. [29]

      Maina J W, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée L F. Mater. Horiz. , 2017, 4: 345-361  doi: 10.1039/C6MH00484A

    30. [30]

      Zhao D, Liu X H, Shi Z Z, Zhu C D, Zhao Y, Wang P, Sun W Y. Dalton Trans. , 2016, 45: 14184-14190  doi: 10.1039/C6DT02755E

    31. [31]

      Lu X B, Darensbourg D J. Chem. Soc. Rev. , 2012, 41: 1462  doi: 10.1039/C1CS15142H

    32. [32]

      Chang Z, Jing X, He C, Liu X, Duan C Y. ACS Catal. , 2018, 8: 1384-1391  doi: 10.1021/acscatal.7b02844

    33. [33]

      Cai G R, Ding M L, Wu Q Y, Jiang H L. Natl. Sci. Rev. , 2020, 7: 37-45  doi: 10.1093/nsr/nwz147

    34. [34]

      Song J L, Zhang Z F, Hu S Q, Wu T B, Jiang T, Han B X. Green Chem. , 2009, 11: 1031-1036  doi: 10.1039/b902550b

    35. [35]

      Huang Y B, Liang J, Wang X S, Cao R. Chem. Soc. Rev. , 2017, 46: 126-157  doi: 10.1039/C6CS00250A

    36. [36]

      Cho H Y, Yang D A, Kim J, Jeong S Y, Ahn W S. Catal. Today, 2012, 185: 35-40  doi: 10.1016/j.cattod.2011.08.019

    37. [37]

      Feng D, Chung W C, Wei Z, Gu Z Y, Jiang H L, Chen Y P, Darensbourg D J, Zhou H C. J. Am. Chem. Soc. , 2013, 135: 17105-17110  doi: 10.1021/ja408084j

    38. [38]

      Gao W Y, Wojtas L, Ma S. Chem. Comm. , 2014, 50: 5316-5318  doi: 10.1039/C3CC47542E

    39. [39]

      Gao W Y, Chen Y, Niu Y, Williams K, Cash L, Perez P J, Wojtas L, Cai F, Chen Y S, Ma S. Angew. Chem. Int. Ed. , 2014, 53: 2615-2619  doi: 10.1002/anie.201309778

    40. [40]

      Li P Z, Wang X J, Liu J, Lim J S, Zou R, Zhao Y. J. Am. Chem. Soc. , 2016, 138: 2142-2145  doi: 10.1021/jacs.5b13335

    41. [41]

      Zhou Z, He C, Yang L, Wang Y F, Liu T, Duan C Y. ACS Catal. , 2017, 7: 2248-2256  doi: 10.1021/acscatal.6b03404

    42. [42]

      Li J R, Sculley J, Zhou H C. Chem. Rev. , 2012, 112: 869-943  doi: 10.1021/cr200190s

    43. [43]

      Ren Y W, Shi Y C, Chen J X, Yang S R, Qi C R, Jiang H F. RSC Adv. , 2013, 3: 2167-2170  doi: 10.1039/c2ra22550f

    44. [44]

      Beyzavi M H, Klet R C, Tussupbayev S, Borycz J, Vermeulen N A, Cramer C J, Stoddart J F, Hupp J T, Farha O K. J. Am. Chem. Soc. , 2014, 136: 15861-15864  doi: 10.1021/ja508626n

    45. [45]

      Babu R, Kathalikkattil A C, Roshan R, Tharun J, Kim D W, Park D W. Green Chem. , 2016, 18: 232-242  doi: 10.1039/C5GC01763G

    46. [46]

      Zhao D, Liu X H, Zhu C D, Kang Y S, Wang P, Shi Z Z, Lu Y, Sun W Y. ChemCatChem, 2017, 9: 4598-4606  doi: 10.1002/cctc.201701190

    47. [47]

      Zhao D, Liu X H, Guo J H, Xu H J, Zhao Y, Lu Y, Sun W Y. Inorg. Chem. , 2018, 57: 2695-2704  doi: 10.1021/acs.inorgchem.7b03099

    48. [48]

      Ding M, Chen S, Liu X Q, Sun L B, Lu J, Jiang H L. ChemSusChem, 2017, 10: 1898-1903  doi: 10.1002/cssc.201700245

    49. [49]

      Yang Q, Yang C C, Lin C H, Jiang H L. Angew. Chem. Int. Ed. , 2019, 58: 3511-3515  doi: 10.1002/anie.201813494

    50. [50]

      Delavari M, Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R. Appl. Organometal. Chem. , 2017, 31: e3656  doi: 10.1002/aoc.3656

    51. [51]

      Yuan S, Zou L, Li H, Chen Y P, Qin J, Zhang Q, Lu W, Hall M B, Zhou H C. Angew. Chem. Int. Ed. , 2016, 55: 10776-10780  doi: 10.1002/anie.201604313

    52. [52]

      Ding M, Jiang H L. ACS Catal. , 2018, 8: 3194-3201  doi: 10.1021/acscatal.7b03404

    53. [53]

      Han Qiu X, Qi B, Ren W M, He C, Niu J Y, Duan C Y. Nat. Commun. , 2015, 6: 10007  doi: 10.1038/ncomms10007

    54. [54]

      Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev. , 2011, 40: 3703-3727  doi: 10.1039/c1cs15008a

    55. [55]

      Cui W G, Zhang G Y, Hu T L, Bu X H. Chem. Soc. Rev. , 2019, 387: 79-120

    56. [56]

      Li D D, Kassymova M, Cai X C, Zang S Q, Jiang H L. Coord. Chem. Rev. , 2020, 412: 213262  doi: 10.1016/j.ccr.2020.213262

    57. [57]

      Xiao J D, Jiang H L. Acc. Chem. Res. , 2019, 52: 356-366  doi: 10.1021/acs.accounts.8b00521

    58. [58]

      XIAO D J, LI D D, JIANG H L. Sci. Sinica Chimica, 2019, 48(9): 1058-1057
       

    59. [59]

      Jessop P G, Joó F, Tai C C. Coord. Chem. Rev. , 2004, 248: 2425-2442  doi: 10.1016/j.ccr.2004.05.019

    60. [60]

      Ye J, Johnson J K. ACS Catal. , 2015, 5: 2921-2928  doi: 10.1021/acscatal.5b00396

    61. [61]

      Ye J, Johnson J K. ACS Catal. , 2015, 5: 6219-6229  doi: 10.1021/acscatal.5b01191

    62. [62]

      Ye J, Johnson J K. Catal. Sci. Technol. , 2016, 6: 8392-8405  doi: 10.1039/C6CY01245K

    63. [63]

      Rungtaweevoranit B, Baek J, Araujo J R, Archanjo B S, Choi K M, Yaghi O M, Somorjai G A. Nano Lett. , 2016, 16: 7645-7649  doi: 10.1021/acs.nanolett.6b03637

    64. [64]

      Zhang W B, Wang L B, Wang K W, Khan M U, Wang M L, Li H L, Zeng J. Small, 2017, 13: 1602583  doi: 10.1002/smll.201602583

    65. [65]

      Li Z H, Rayder T M, Luo L S, Byers J A, Tsung C K. J. Am. Chem. Soc. , 2018, 140: 8082-8085  doi: 10.1021/jacs.8b04047

    66. [66]

      Li L, Cai X, Chen S, Zhang H, Zhang K H L, Hong J, Chen B, Kuo D H, Wang W. ChemSusChem, 2018, 11: 1040-1047  doi: 10.1002/cssc.201800016

    67. [67]

      Lü J, Cao R. Angew. Chem. Int. Ed. , 2016, 55: 9474-9480  doi: 10.1002/anie.201602116

    68. [68]

      Wang S B, Wang X C. Small, 2015, 11: 3097-3112  doi: 10.1002/smll.201500084

    69. [69]

      Guo F, Guo J H, Wang P, Kang Y S, Liu L, Zhao J, Sun W Y. Chem. Sci. , 2019, 10: 4834-4838  doi: 10.1039/C8SC05060K

    70. [70]

      Wei Y P, Liu Y, Guo F, Dao X Y, Sun W Y. Dalton Trans. , 2019, 48: 8221-8226  doi: 10.1039/C9DT01767D

    71. [71]

      Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew. Chem. Int. Ed. , 2012, 51: 3364-3367  doi: 10.1002/anie.201108357

    72. [72]

      Magdesieva T V, Yamamoto T, Tryk D A, Fujishima A. J. Electrochem. Soc. , 2002, 149: D89-D95  doi: 10.1149/1.1475690

    73. [73]

      Horiuchi Y, Toyao T, Miyahara K, Lionet Zakary L, Van D D, Kamata Y, Kim T H, Lee S W, Matsuoka M. Chem. Commun. , 2016, 52: 5190-5193  doi: 10.1039/C6CC00730A

    74. [74]

      Chi L, Xu Q, Liang X Y, Wang J D, Su X T. Small, 2016, 12: 1351-1358  doi: 10.1002/smll.201503526

    75. [75]

      Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal. , 2014, 4: 4254-4260  doi: 10.1021/cs501169t

    76. [76]

      Dao X Y, Guo J H, Wei Y P, Guo F, Liu Y, Sun W Y. Inorg. Chem. , 2019, 58: 8517-8524  doi: 10.1021/acs.inorgchem.9b00824

    77. [77]

      Dao X Y, Xie X F, Guo J H, Zhang X Y, Kang Y S, Sun W Y. ACS Appl. Energy Mater. , 2020, 3: 3946-3954  doi: 10.1021/acsaem.0c00352

    78. [78]

      Dao X Y, Guo J H, Zhang X Y, Wang S Q, Cheng X M, Sun W Y. J. Mater. Chem. A, 2020, 8: 25850-25856  doi: 10.1039/D0TA10278D

    79. [79]

      Wei Y P, Yang S, Wang P, Guo J H, Huang J, Sun W Y. Dalton Trans. , 2021, 50: 384-390  doi: 10.1039/D0DT03500A

    80. [80]

      Wang C, Xie Z G, deKrafft K E, Lin W B. J. Am. Chem. Soc. , 2011, 133: 13445-13454  doi: 10.1021/ja203564w

    81. [81]

      Zhang S Q, Li L N, Zhao S E, Sun Z H, Hong M C, Luo J H. J. Mater. Chem. A, 2015, 3: 15764-15768  doi: 10.1039/C5TA03322E

    82. [82]

      Lee Y, Kim S, Fei H, Kang J K, Cohen S M. Chem. Commun. , 2015, 51: 16549-16552  doi: 10.1039/C5CC04506A

    83. [83]

      Liu Y Y, Yang Y M, Sun Q L, Wang Z Y, Huang B B, Dai Y, Qin X Y, Zhang X Y. ACS Appl. Mater. Interfaces, 2013, 5: 7654-7658  doi: 10.1021/am4019675

    84. [84]

      Xu H Q, Hu J H, Wang D K, Li Z H, Zhang Q, Luo L, Yu S H, Jiang H L. J. Am. Chem. Soc. , 2015, 137: 13440-13443  doi: 10.1021/jacs.5b08773

    85. [85]

      Zhang H B, Wei J, Dong J C, Liu G G, Shi L, An P F, Zhao G X, Kong J T, Wang X J, Meng X G, Zhang J, Ye J H. Angew. Chem. Int. Ed. , 2016, 55: 14310-14314  doi: 10.1002/anie.201608597

    86. [86]

      Wang S B, Yao W S, Lin J L, Ding Z X, Wang X C. Angew. Chem. Int. Ed. , 2014, 53: 1034-1038  doi: 10.1002/anie.201309426

    87. [87]

      Wang S B, Lin J L, Wang X C. Phys. Chem. Chem. Phys. , 2014, 16: 14656-14660  doi: 10.1039/c4cp02173h

    88. [88]

      Wang S B, Wang X C. Appl. Catal. B, 2015, 162: 494-500  doi: 10.1016/j.apcatb.2014.07.026

    89. [89]

      Liu Q, Low Z X, Li L X, Razmjou A, Wang K, Yao J F, Wang H T. J. Mater. Chem. A, 2013, 1: 11563-11569  doi: 10.1039/c3ta12433a

    90. [90]

      Li R, Hu J H, Deng M S, Wang H L, Wang X J, Hu Y L, Jiang H L, Jiang J, Zhang Q, Xie Y, Xiong Y J. Adv. Mater. , 2014, 26: 4783-4788  doi: 10.1002/adma.201400428

    91. [91]

      Ma Y J, Tang Q, Sun W Y, Yao Z Y, Zhu W H, Li T, Wang J Y. Appl. Catal. B, 2020, 270: 118856  doi: 10.1016/j.apcatb.2020.118856

    92. [92]

      Guo F, Yang S Z, Liu Y, Wang P, Huang J, Sun W Y. ACS Catal. , 2019, 9: 8464-8470  doi: 10.1021/acscatal.9b02126

    93. [93]

      Guo F, Wei Y P, Wang S Q, Zhang X Y, Wang F M, Sun W Y. J. Mater. Chem. A, 2019, 7: 26490-26495  doi: 10.1039/C9TA10575A

    94. [94]

      Wang S Q, Zhang X Y, Dao X Y, Cheng X M, Sun W Y. ACS Appl. Nano Mater. , 2020, 3: 10437-10445  doi: 10.1021/acsanm.0c02312

    95. [95]

      Wu P Y, Guo X Y, Cheng L J, He C, Wang J, Duan C Y. Inorg. Chem. , 2016, 55: 8153-8159  doi: 10.1021/acs.inorgchem.6b01267

    96. [96]

      Froehlich J D, Kubiak C P. J. Am. Chem. Soc. , 2015, 137: 3565-3573  doi: 10.1021/ja512575v

    97. [97]

      Neri G, Forster M, Walsh J J, Robertson C M, Whittles T J, Farràs P, Cowan A J. Chem. Commun. , 2016, 52: 14200-14203  doi: 10.1039/C6CC08590C

    98. [98]

      Schneider J, Jia H, Kobiro K, Cabelli D E, Muckerman J T, Fujita E. Energ Environ. Sci. , 2012, 5: 9502-9510  doi: 10.1039/c2ee22528j

    99. [99]

      Liu J X, Wöll C. Chem. Soc. Rev. , 2017, 46: 5730-5770  doi: 10.1039/C7CS00315C

    100. [100]

      Qiao J L, Liu Y Y, Hong F, Zhang J J. Chem. Soc. Rev. , 2014, 43: 631-675  doi: 10.1039/C3CS60323G

    101. [101]

      Guo J H, Sun W Y. Appl. Catal. B, 2020, 275: 119154  doi: 10.1016/j.apcatb.2020.119154

    102. [102]

      Kumar R S, Kumar S S, Kulandainathana M A. Electrochem. Commun. , 2012, 25: 70-73  doi: 10.1016/j.elecom.2012.09.018

    103. [103]

      Kang X C, Zhu Q G, Sun X F, Hu J Y, Zhang J L, Liu Z M, Han B X. Chem. Sci. , 2016, 7: 266-273  doi: 10.1039/C5SC03291A

    104. [104]

      Choi I, Jung Y E, Yoo S J, Kim J Y, Kim H J, Lee C Y, Jang J H. J. Electrochem. Sci. Technol. , 2017, 8: 61-68  doi: 10.33961/JECST.2017.8.1.61

    105. [105]

      Hod I, Sampson M D, Deria P, Kubiak C P, Farha O K, Hupp J T. ACS Catal. , 2015, 5: 6302-6309  doi: 10.1021/acscatal.5b01767

    106. [106]

      Kornienko N, Zhao Y B, Kley C S, Zhu C H, Kim D, Lin S, Chang C J, Yaghi O M, Yang P D. J. Am. Chem. Soc. , 2015, 137: 14129-14135  doi: 10.1021/jacs.5b08212

    107. [107]

      Guo J H, Zhang X Y, Dao X Y, Sun W Y. ACS Appl. Nano Mater. , 2020, 3: 2625-2635  doi: 10.1021/acsanm.0c00007

    108. [108]

      Jiao L, Yang W J, Wan G, Zhang R, Zheng X S, Zhou H, Yu S H, Jiang H L. Angew. Chem. Int. Ed. , 2020, 59: 20589-20595  doi: 10.1002/anie.202008787

    109. [109]

      Gong Y N, Jiao L, Qian Y Y, Pan C Y, Zheng L R, Cai X C, Liu B, Yu S H, Jiang H L. Angew. Chem. Int. Ed. , 2020, 59: 2705-2709  doi: 10.1002/anie.201914977

    110. [110]

      Wang X Q, Chen Z, Zhao X Y, Yao T, Chen W X, You R, Zhao C M, Wu G, Wang J, Huang W X, Yang J L, Hong X, Wei S Q, Wu Y E, Li Y D. Angew. Chem. Int. Ed. , 2018, 57: 1944-1948  doi: 10.1002/anie.201712451

    111. [111]

      Ding M L, Cai X C, Jiang H L. Chem. Sci. , 2019, 10: 10209-10230  doi: 10.1039/C9SC03916C

    112. [112]

      Ding M L, Jiang H L. CCS Chem. , 2020, 2: 2740-2748

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(144)
  • Abstract views(4024)
  • HTML views(1413)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return