Citation: Jin-Jian LIU, Na LIU, Yi-Wei LU, Guo-Zheng ZHAO. Three Photochromic Co-crystals Based on Viologen Moiety[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(5): 937-944. doi: 10.11862/CJIC.2021.100 shu

Three Photochromic Co-crystals Based on Viologen Moiety

  • Corresponding author: Jin-Jian LIU, liujj@sxnu.edu.cn
  • Received Date: 25 November 2020
    Revised Date: 5 January 2021

Figures(4)

  • The reactions of 1, 2, 4, 5-benzenetetracarboxylic acid (H4BTEC) with the transition metal ions in the presence of neutral viologen moiety, 1-carboxyethyl-4, 4'-bipyridine (CEbpy), led to three isostructural co-crystals[M(H2O)5(BTEC)0.5]·(CEbpy) (M=Mn (1), Zn (2), Co (3)) in an alkaline environment. Upon UV irradiation, these three compounds exhibited obvious photochromic behaviors owing to the formation of viologen radicals through photo-induced electron transfer. Meanwhile, compound 3 exhibited irreversible hydrochromic behavior upon heating, while compounds 1 and 2 did not. The influence of metal ions on their chromic behaviors has been discussed. CCDC: 1953749, 1; 1954911, 2; 2032783, 3.
  • 加载中
    1. [1]

      (a) Shi H Y, Lu X C, Liu Y H, Song J, Deng K, Zeng Q D, Wang C. ACS Nano, 2018, 12: 8781-8790
      (b) Gao H Y, Shen Q J, Zhao X R, Yan X Q, Pang X, Jin W J. J. Mater. Chem., 2012, 22: 5336-5343
      (c) Wang Y, Zhu W G, Du W N, Liu X F, Zhang X T, Dong H L, Hu W P. Angew. Chem. Int. Ed., 2018, 57: 3963-3967

    2. [2]

      (a) Ji L, Yang Z, Zhao Y, Sun M, Cao L, Yang X J, Wang Y Y, Wu B. Chem. Commun., 2016, 52: 7310-7313
      (b) Zhao J, Yang D, Zhao Y, Yang X J, Wang Y Y, Wu B. Angew. Chem. Int. Ed., 2014, 53: 6632-6636

    3. [3]

      (a) Zhang J, Liu G F, Zhou Y C, Long G K, Gu P Y, Zhang Q C. ACS Appl. Mater. Interfaces, 2017, 9: 1183-1188
      (b) Zhang J, Gu P Y, Long G K, Ganguly R, Li Y X, Zhang Q C. Chem. Sci., 2016, 7: 3851-3856

    4. [4]

      (a) Wang L, Zhao L, Xue R Y, Lu X F, Wen Y H, Yang Y. Sci. China Chem., 2012, 55: 2515-2522
      (b) Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Nature, 2007, 446: 778-781
      (c) Li S Z, Yan D P. Sci. China Chem., 2018, 61: 215-221

    5. [5]

      (a) Hao P F, Wang W P, Zhang L F, Shen J J, Fu Y L. Inorg. Chem. Front., 2019, 6: 287-292
      (b) Zhu M Q, Zhu L, Han J J, Wu W, Hurst J K, Li A D Q. J. Am. Chem. Soc., 2006, 12: 4303-4309
      (c) Lin F Y, Morokuma K. J. Am. Chem. Soc., 2013, 135: 10693-10702

    6. [6]

      (a) Li S, Jia C, Wu B, Luo Q, Huang X, Yang Z, Li Q S, Yang X J. Angew. Chem. Int. Ed., 2011, 50: 5721-5724
      (b) Wu B, Cui F, Lei Y, Li S, Amadeu N S, Janiak C, Lin Y J, Weng L H, Wang Y Y, Yang X J. Angew. Chem. Int. Ed., 2013, 5: 5096-5100
      (c) Yang D, Zhao J, Yu L, Lin X, Zhang W, Ma H, Gogoll A, Zhang Z, Wang Y, Yang X J, Wu B. J. Am. Chem. Soc., 2017, 13: 5946-5951

    7. [7]

      (a) Sun J K, Wang P, Yao Q X, Chen Y J, Li Z H, Zhang Y F, Wu L M, Zhang J. J. Mater. Chem., 2012, 22: 12212-12219
      (b) Sui Q, Yuan Y, Yang N N, Li X, Gong T, Gao E Q. J. Mater. Chem. C, 2017, 5: 1240-12408
      (c) Bockman T M, Kochi J K. J. Org. Chem., 1990, 55: 4127-4135
      (d) Yang X, Zhang Y, Zhang B, Zhang S, Liu X, Li G, Chu D, Zhao Y, He G. J. Mater. Chem. C, 2020, 8: 126326-16332
      (e) Li G, Xu L, Zhang W, Zhou K, Ding Y, Liu F, He X, He G. Angew. Chem. Int. Ed., 2018, 57: 4897-4901

    8. [8]

      (a) Zhang Q W, Sun H Q, Wang X S, Hao X H, An S L. ACS Appl. Mater. Interfaces, 2015, 7: 25289-25297
      (b) Leblanc N, Bi W H, Mercier N, Auban-Senzier P, Pasquier C. Inorg. Chem., 2010, 49: 5824-5833
      (c) Chen H J, Li M, Zheng G M, Wang Y F, Song Y, Han C H, Fu Z Y, Liao S J, Dai J C. RSC Adv., 2014, 4: 42983-42990

    9. [9]

      (a) Liu J J, Li J, Lu W B. Dyes Pigm., 2020, 172: 107792
      (b) Liu J J, Li J, Lu Y W, Lu W B. Dyes Pigm., 2020, 177: 108266
      (c) Liu J J, Lu Y W, Lu W B. Dalton Trans., 2020, 49: 4044-4049

    10. [10]

      (a) Shi Q, Wu S Y, Qiu X T, Sun Y Q, Zheng S T. Dalton Trans., 2019, 48: 954-963
      (b) Qiu X T, Shi Q, Zhang D Q, Lin Q F, Sun Y Q. ChemstrySelect, 2018, 3: 6611-6616
      (c) Li P X, Wang M S, Cai L Z, Wang G E, Guo G C. J. Mater. Chem. C, 2015, 3: 253-256

    11. [11]

      Phillips A D, Fei Z, Ang W H, Scopelliti R, Dyson P J. Cryst. Growth Des. , 2009, 9: 1966-1978  doi: 10.1021/cg801285u

    12. [12]

      CrysAlisPro, Ver. 1.171.33.56, Oxford diffraction Ltd., Oxfordshire, UK, 2010.

    13. [13]

      (a) Sheldrick G M. Acta Crystallogr. Sect. A, 2008, A64: 112-122
      (b) Sheldrick G M. SHELX 97, Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    14. [14]

      (a) Yao Q X, Pan L, Jin X H, Li J, Li J, Ju Z F, Zhang J. Chem. Eur. J., 2009, 15: 11890-11897
      (b) Li W B, Yao Q W, Sun L, Yang X D, Guo R Y, Zhang J. CrystEngComm, 2017, 19: 722-726

    15. [15]

      (a) Wan F, Qiu L X, Zhou L L, Sun Y Q, You Y. Dalton Trans., 2015, 44: 18320-18323
      (b) Ni A Y, Mu Y, Pan J, Han S D, Shang M M, Wang G M. Chem. Commun., 2018, 54: 3712-3714

    16. [16]

      (a) Gong T, Yang X, Fang J J, Sui Q, Xi, F G, Gao E Q. ACS Appl. Mater. Interfaces, 2017, 9: 5503-5512
      (b) Zhang C H, Sun L B, Yan Y, Shi H Z, Wang B L, Liang Z Q. J. Mater. Chem. C, 2017, 5: 8999-9004

    17. [17]

      (a) Song Y M, Luo F, Luo M B, Liao Z W, Sun G W, Tian X Z, Zhu Y, Yuan Z J, Liu S J, Xu, W Y, Feng X F. Chem. Commun., 2012, 4: 1006-1008
      (b) Zhou H, Qin L, Wu M K, Han L. Cryst. Growth Des., 2018, 18: 5738-5744
      (c) Sui Q, Yang N N, Gong T, Li P, Yuan Y, Gao E Q, Wang L. J. Phys. Chem. Lett., 2017, 8: 5450-5455

    18. [18]

      (a) Liu J J, Guan Y F, Lin M J, Huang C C, Dai W X. Cryst. Growth Des., 2016, 16: 2836-2842
      (b) Li S L, Han M, Wu B, Wang J, Zhang X M. Cryst. Growth Des., 2018, 18: 3883-3889

    19. [19]

      (a) Yang X D, Chen C, Zhang Y J, Cai L X, Tan B, Zhang J. Dalton Trans., 2016, 45: 4522-4527
      (b) Jin X H, Sun J K, Xu X M, Li Z H, Zhang J. Chem. Commun., 2010, 46: 4695-4697

    20. [20]

      (a) Toma O, Mercier N, Allain M, Kassiba A A, Bellat J P, Weber G, Bezverkhyy I. Inorg. Chem., 2015, 54: 8923-8930
      (b) Wang J, Li S L, Zhang X M. ACS Appl. Mater. Interfaces, 2016, 8: 24862-24869
      (c) Aulakh D, Varghese J R, Wriedt M. Inorg. Chem., 2015, 54: 1756-1764

    21. [21]

      (a) Wang H Y, Liu S, Fu C, Zhang H. CrystEngComm, 2019, 21: 1635-1641
      (b) Ma Y J, Hu J X, Han S D, Pan J, Li J H, Wang G M. J. Am. Chem. Soc., 2020, 142: 2682-2689

    22. [22]

      Sun Y N, Li L, Fu C, Wang H Y, Zhang H. Inorg. Chem. Commun. , 2018, 96: 119-123  doi: 10.1016/j.inoche.2018.08.006

    23. [23]

      FENG Y B, ZHANG F B, XUAN L H, ZHU Y Y. Journal of Dalian Institute of Light Industry, 1998, 17(2): 70-76

    24. [24]

      (a) Zheng T, Clemente-Juan J M, Ma J, Dong L, Bao S S, Huang J, Coronado E, Zheng L M. Chem. Eur. J., 2013, 19: 16394-16402
      (b) Yang X D, Zhu R, Yin J P, Sun L, Guo R Y, Zhang J. Cryst. Growth Des., 2018, 18: 3236-3243

    25. [25]

      Uemura K, kitagawa S, Kondo M, Fukui K, Kitaura R, Chang H C. Chem. Eur. J. , 2020, 8: 3586-3600

    26. [26]

      (a) Bommakanti S, Das S K. Front. Mater., 2019, 6: 170
      (b) Liu J J. Dyes Pigm., 2018, 154: 92-99

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    8. [8]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    9. [9]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    10. [10]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    14. [14]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    15. [15]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    16. [16]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    17. [17]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    18. [18]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(8)
  • Abstract views(1077)
  • HTML views(296)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return