Citation: Xiao-Ting QIAN, Meng-Di LÜ, Qun WANG, Qin TAO, Xu-Ling XUE, Hong-Ke LIU. Synthesis and Antitumor Properties of 3-(2-Pyridine-3-vinyl)-1H-indole Dipyridine Ruthenium Complex[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(5): 824-834. doi: 10.11862/CJIC.2021.099 shu

Synthesis and Antitumor Properties of 3-(2-Pyridine-3-vinyl)-1H-indole Dipyridine Ruthenium Complex

Figures(6)

  • In this work, we designed a novel bipyridine ruthenium complex Ru-Indole using 3-(2-pyridine-3-vinyl)1H-indoles (Indole) as the ligand with the bipyridine ruthenium precursor Ru(bpy)2Cl2 as the coordination linkage. The structures of ligand and related complexes were characterized by using 1H NMR, ESI-MS and elemental analysis. Using a fluorescence spectrophotometer and an ultraviolet-visible spectrophotometer, it is found that the complex could emit fluorescence under the excitation of UV-Vis light, which realized the visual imaging of the complex in the cell. The introduction of the ligand greatly improved the lipophilicity of the complex Ru-Indole, rendering it to be easier to enter the cell and exhibited better anti tumor activity compared with the ligand Indole and the precursor Ru(bpy)2Cl2. Furthermore, we used flow cytometry, confocal imaging and western blotting to explore the cell death mechanism induced by Ru-Indole. The results show that the complex Ru-Indole could be enriched in the mitochondria and lysosomes of tumor cells, and could change the mitochondrial membrane potential and at last induce the autophagy.
  • 加载中
    1. [1]

      Rosenberg B, Vancamp L, Trosko J E, Mansour V H. Nature, 1969, 222: 385-386  doi: 10.1038/222385a0

    2. [2]

      Wheate N J, Walker S, Craig G E, Rabbab O. Dalton Trans. , 2010, 39(35): 8113-8127  doi: 10.1039/c0dt00292e

    3. [3]

      Sean M, Rakesh K P, Shanta D. Proc. Natl. Acad. Sci. U.S.A. , 2014, 111(29): 10444-10449  doi: 10.1073/pnas.1405244111

    4. [4]

      Petrovic D, Stojimirovic B, Petrovic B, Bugarcic Z M, Bugarcic Z D. Bioorg. Med. Chem. , 2007, 15(12): 4023-4211

    5. [5]

      Liu Z, Sadler P J. Acc. Chem. Res. , 2014, 47(4): 1174-1185  doi: 10.1021/ar400266c

    6. [6]

      Poynton F E, Bright S A, Blasco S, Walliams D C, Kelly J M, Gunnlaugsson T. Chem. Soc. Rev. , 2017, 46(24): 7706-7756  doi: 10.1039/C7CS00680B

    7. [7]

      Knoll J D, Turro C. Coord. Chem. Rev. , 2015, 282: 110-126

    8. [8]

      Murray B S, Dyson P J. Curr. Opin. Chem. Biol. , 2020, 56: 28-34

    9. [9]

      Christian G H, Michael A J, Stefanie Z S, Michael G, Alexander E, Walter B, Haralabos Z, Paul J D, Bernhard K K. Chem. Biodivers. , 2008, 5(10): 2140-2155  doi: 10.1002/cbdv.200890195

    10. [10]

      Chen F, Soldevila-Barreda J J, Romero-Canelon I, Coverdale J P C, Song J I, Clarkson G J, Kasparkova J, Habtemariam A, Brabec V, Wolny J A, Schunemann V, Sadler P J. Dalton Trans. , 2018, 47(21): 7178-7189  doi: 10.1039/C8DT00438B

    11. [11]

      Noffke A L, Habtemariam A, Pizarro A M, Sadler P J. Chem. Commun. , 2012, 48(43): 5219-5246  doi: 10.1039/c2cc30678f

    12. [12]

      Yan Y K, Melchart M, Habtemariam A, Sadler P J. Chem. Commun. , 2005, 38: 4764-4776

    13. [13]

      Kong Y Q, Chen F, Su Z, Qian Y, Wang F X, Wang X X, Zhao J, Mao Z W, Liu H K. J. Inorg. Biochem. , 2018, 182: 194-199  doi: 10.1016/j.jinorgbio.2018.02.004

    14. [14]

      WU J, TAO Q, GE C, XUE X L, QIAN Y, LIU H K. Chinese J. Inorg. Chem. , 2020, 36(7): 1223-1232
       

    15. [15]

      Qiu K Q, Wen Y, Ouyang C, Liao X X, Liu C F, W, Rees T, Zhang Q L, Ji L N, Chao H. Chem. Commun. , 2019, 55(75): 11235-11238  doi: 10.1039/C9CC05962H

    16. [16]

      Yang G G, Zhang H, Zhang D Y, Cao Q, Yang J, Ji L N, Mao Z W. Biomaterials, 2018, 185: 73-85  doi: 10.1016/j.biomaterials.2018.08.065

    17. [17]

      Chen J, Tao Q, Wu J, Wang M M, Su Z, Qian Y, Yu T, Wang Y, Xue X L, Liu H K. J. Inorg. Biochem. , 2020, 210: 111132  doi: 10.1016/j.jinorgbio.2020.111132

    18. [18]

      Li H G, Xie C, Lan R F, Zha S, Chan C F, Wong W Y, Ho K L, Chan B D, Luo Y X, Zhang J X, Law G L, Tai W C S, Bunzli J C G, Wong K L. J. Med. Chem. , 2017, 60: 8923-8932  doi: 10.1021/acs.jmedchem.7b01162

    19. [19]

      Zhang C, Guan R L, Liao X X, Ouyang C, Rees T W, Liu J P, Chen Y, Ji L N, Chao H. Chem. Commun. , 2019, 55: 12547-12550  doi: 10.1039/C9CC05998A

    20. [20]

      Nguyen H H, Lavrenov S N, Sundar S N, Nguyen D H H, Min T, Marconett C N, Kung J, Staub R E, Preobrazhenskaya M N, Bjeldanes L F. Chem. Biol. Int. , 2010, 186(3): 255-266  doi: 10.1016/j.cbi.2010.05.015

    21. [21]

      Lafayette E A, Almeida S M V, Santos R V C, Oliveira J F, Cruz Amorim C A, Silva R M F, Rocha Pitta M G, Rocha Pitta I, Moura R O, Carvalho Junior L B, Melo Rego M J B, Lima M C A. Eur. J. Med. Chem. , 2017, 136: 511-522  doi: 10.1016/j.ejmech.2017.05.012

    22. [22]

      Kaur K, Jaitak V. Anti-Cancer Agents Med. Chem. , 2019, 19(8): 962-983  doi: 10.2174/1871520619666190312125602

    23. [23]

      Weng J, Tsai C, Kulp S, Chen C. Cancer Lett. , 2008, 262(2): 153-163  doi: 10.1016/j.canlet.2008.01.033

    24. [24]

      Kumari A, Singh R. Bioorg. Chem. , 2019, 89: 103021  doi: 10.1016/j.bioorg.2019.103021

    25. [25]

      Nam S, Buettner R, Turkson J, Kim D, Cheng J Q, Muehlbeyer S, Hippe F, Vatter S, Merz K H, Eisenbrand G, Jove R. Proc. Natl. Acad. Sci. U.S.A. , 2005, 102(17): 5998-6003  doi: 10.1073/pnas.0409467102

    26. [26]

      Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin D J, Bohlen P, Kerbel R S. J. Clin. Invest. , 2000, 105(8): 2827-2827

    27. [27]

      George M D S. Curr. Oncol. Rep. , 2007, 9: 323-327  doi: 10.1007/s11912-007-0040-1

    28. [28]

      Martino G D, Regina G L, Coluccia A, Edler M C, Barbera M C, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R. J. Med. Chem. , 2004, 47(25): 6120-6123  doi: 10.1021/jm049360d

    29. [29]

      Li W L, Sun H H, Xu F J, Shuai W, Liu J, Xu S T, Yao H Q, Ma C, Zhu Z Y, Xu J Y. Bioorg. Chem. , 2019, 85: 49-59  doi: 10.1016/j.bioorg.2018.12.015

    30. [30]

      Dolusic E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, Pochet L, Eynde B V, Masereel B, Wouters J, Frederick R. J. Med. Chem. , 2011, 54: 5320-5334  doi: 10.1021/jm2006782

    31. [31]

      Kavukcu S B, Sahin O, Vatansever H S, Kurt F O, Turkmen H. Bioorg. Chem. , 2020, 99: 103793  doi: 10.1016/j.bioorg.2020.103793

    32. [32]

      Zhu Z Z, Wang X Y, Li T J, Aime S, Sadler P J. Angew. Chem. Int. Ed. , 2014, 53: 13225-13228  doi: 10.1002/anie.201407406

    33. [33]

      ElSawy E R, Abdelwahab A B, Kirsch G. Synthesis, 2018, 50(23): 4525-4538  doi: 10.1055/s-0037-1610288

    34. [34]

      Sundaree S, Vaddula B R, Tantak M P, Khandagale S B, Shi C, Shah K, Kumar D. Med. Chem. Res. , 2016, 25(5): 941-950  doi: 10.1007/s00044-016-1522-1

    35. [35]

      Li J, Li X C, Xu G H, Zheng Z H, Deng J N, Ding X B. Chem. Commun. , 2018, 54: 11594  doi: 10.1039/C8CC05893H

    36. [36]

      Hua S A, Cattaneo M, Oelschlegel M, Heindl M, Schmid L, Dechert S, Wenger O S, Siewert I, Gonzalez L, Meyer F. Inorg. Chem. , 2020, 59: 4972-4984  doi: 10.1021/acs.inorgchem.0c00220

    37. [37]

      Li J, Zeng L L, Xiong K, Rees T W, Jin C Z, Wu W J, Chen Y, Ji L N, Chao H. Chem. Commun. , 2019, 55(73): 10972-10975  doi: 10.1039/C9CC05826E

    38. [38]

      Cao J J, Tan C P, Chen M H, Wu N, Yao D Y, Liu X G, Ji L N, Mao Z W. Chem. Sci. , 2018, 8(1): 631-640

    39. [39]

      Huang H Y, Yu B L, Zhang P Y, Huang J J, Chen Y, Gasser G, Ji L N, Chao H. Angew. Chem. Int. Ed. , 2015, 54: 14049-14052  doi: 10.1002/anie.201507800

    40. [40]

      Huang H, Zhang P, Yu B, Chen Y, Wang J, Ji L, Chao H. J. Med. Chem. , 2014, 57(21): 8971-8983  doi: 10.1021/jm501095r

    41. [41]

      Jin S X, Hao Y G, Zhu Z Z, Muhammad N, Zhang Z Q. Inorg. Chem. , 2018, 57(17): 11135-11145  doi: 10.1021/acs.inorgchem.8b01707

    42. [42]

      Qu F R, Park S, Martinez K, Gray J L, Thowfeik F S, Lundeen J A, Kuhn A E, Charboneau D J, Gerlach D L, Lockart M M. Inorg. Chem. , 2017, 56(13): 7519-7532  doi: 10.1021/acs.inorgchem.7b01065

    43. [43]

      Cuello-Garibo J A, Meijer M S, Bonnetn S. Chem. Commun. , 2017, 53: 6768  doi: 10.1039/C7CC03469E

    44. [44]

      Liu H K, Sadler P J. Acc. Chem. Res. , 2011, 44(5): 349-359  doi: 10.1021/ar100140e

    45. [45]

      Qiu K Q, Zhu H Y, Rees T W, Ji L N, Zhang Q L, Chao H. Coord. Chem. Rev. , 2019, 398: 113010  doi: 10.1016/j.ccr.2019.07.007

    46. [46]

      Song X D, Kong X, He S F, Chen J X, Sun J, Chen B B, Zhao J W, Mao Z W. Eur. J. Med. Chem. , 2017, 138: 246-254  doi: 10.1016/j.ejmech.2017.06.038

    47. [47]

      Pavlovic M, Tadic A, Gligorijevic N, Poljarevi J, Aranelovi S. J. Inorg. Biochem. , 2020, 210: 111155  doi: 10.1016/j.jinorgbio.2020.111155

    48. [48]

      Chen J C, Wang J, Deng Y Y, Li B J, Li C P, Lin Y X, Yang D B, Zhang H Y, Chen L M, Wang T. Eur. J. Med. Chem. , 2020, 203: 112562  doi: 10.1016/j.ejmech.2020.112562

    49. [49]

      Liu Z, Li J J, Kong D L, Tian M, Zhao Y, Xu Z S, Gao W Y, Zhao Y M. Eur. J. Inorg. Chem. , 2019, 2019(2): 287-294  doi: 10.1002/ejic.201801339

    50. [50]

      Kamatchi T S, Subarkhan M K M, Ramesh R, Wang H X, Malecki J G. Dalton Trans. , 2020, 49(32): 11385-11395  doi: 10.1039/D0DT01476A

    51. [51]

      Costa M S, Goncalves Y G, Borgesn B C, Sliva M J B, Amstalden M K, Costa T R, Antunes L M G, Rodrigues R S, Rodrigues V D, Yoneyama K A G. Sci. Rep. , 2020, 10(1): 15410  doi: 10.1038/s41598-020-72420-w

    52. [52]

      Heinemann F, Karges J, Gasser G. Acc. Chem. Res. , 2017, 50: 2727-2736  doi: 10.1021/acs.accounts.7b00180

    53. [53]

      Zhang P Y, Chiu C K C, Huang H Y, Lam Y P Y, Habtemariam A, Malcomson T, Paterson M J, Clarkson G J, O'Connor P B, Chao H, Sadler P J. Angew. Chem. Int. Ed. , 2017, 56(47): 14898-14902  doi: 10.1002/anie.201709082

    54. [54]

      Zheng Y, Zhang D Y, Zhang H, Cao J J, Tan C P, Ji L N, Mao Z W. Chem. Eur. J. , 2018, 24(71): 18971-18980  doi: 10.1002/chem.201803630

    55. [55]

      Elmore S. Toxicol. Pathol. , 2007, 35(4): 495-516  doi: 10.1080/01926230701320337

    56. [56]

      Vandenabeele P, Galluzzi L, Berghe T V. Nat. Rev. Mol. Cell Biol. , 2010, 11: 700-714  doi: 10.1038/nrm2970

    57. [57]

      Levine B. Nature, 2007, 446: 745-747  doi: 10.1038/446745a

    58. [58]

      Tang B, Wan D, Wang Y J, Yi Q Y, Guo B H, Liu Y J. Eur. J. Med. Chem. , 2018, 145: 302-314  doi: 10.1016/j.ejmech.2017.12.087

    59. [59]

      Pereira O, Teixeira A, Sampaio-Marques B, Castro I, Girao H, Ludovico P. J. Cell Mol. Med. , 2018, 22(10): 4807-4817  doi: 10.1111/jcmm.13737

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(3)
  • Abstract views(641)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return