Citation: Xu HAN, Bo-wen SUN, Rui-xue XU, Jing XU, Wang HONG, Kai QIAN. Research Progress on Resistance Switching Mechanism of Transparent Memristor Based on Indium Tin Oxide Electrode[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(4): 577-591. doi: 10.11862/CJIC.2021.081 shu

Research Progress on Resistance Switching Mechanism of Transparent Memristor Based on Indium Tin Oxide Electrode

  • Corresponding author: Kai QIAN, kaiqian@sdu.edu.cn
  • Received Date: 30 September 2020
    Revised Date: 28 January 2021

Figures(16)

  • With the development of electronic technology, functional electronic devices with characteristics such as transparency and flexibility have received widespread attention. As a novel electronic device, the memristor has broad application prospects in the new generation of information technology including low-power neuromorphic computing, non-volatile logic, data storage, etc., and has become a new type of nanodevice that has attracted much attention in recent years. Indium tin oxide, which is an ideal conductive oxide material for transparent memristor preparation due to its excellent optical transparency, is always used in memristor. This review first briefly introduces the structure of memristors, and then reviews the research and application of memristors based on indium tin oxide materials, including their use as memory, electronic synapses, and nociceptor. Then the resistive switching mechanism of indium tin oxide based memristors, especially the newly discovered indium diffusion mechanism in recent years, is summarized. At last, the development prospect of indium tin oxide memristors is summarized and forecasted.
  • 加载中
    1. [1]

      Chua L O. IEEE Trans. Circuits Syst. , 1971, 18(5): 507-519

    2. [2]

      Strukov D B, Snider G S, Stewart D R, Williams R S. Nature, 2008, 453(7191): 80-83

    3. [3]

      Baldi L, Bez R, Sandhu G. Solid State Electron. , 2014, 102: 2-11

    4. [4]

      Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S. Rep. Prog. Phys. , 2012, 75(7): 076502

    5. [5]

      Zhang Z H, Wang Z W, Shi T, Bi C, Rao F, Cai Y M, Liu Q, Wu H Q, Zhou P. InfoMat, 2020, 2(2): 261-290

    6. [6]

      Li Y T, Long S B, Liu Q, Lü H B, Liu S, Liu M. Chin. Sci. Bull. , 2011, 56(28/29): 3072-3078

    7. [7]

      ZHANG Y, LONG S B, LIU M. Physics, 2017, 46(10): 645-657
       

    8. [8]

      LONG S B, LIU Q, LÜ H B, LIU M. Sci. Sin. -Phys. Mech. Astron. , 2016, 46(10): 107311
       

    9. [9]

      Yang J J, Strukov D B, Stewart D R. Nat. Nanotechnol. , 2013, 8(1): 13-24

    10. [10]

      Pan F, Gao S, Chen C, Song C, Zeng F. Mater. Sci. Eng. R, 2014, 83: 1-59

    11. [11]

      Zidan M A, Strachan J P, Lu W D. Nat. Electron. , 2018, 1(1): 22-29

    12. [12]

      Chang T C, Chan K C, Tsai T M, Chu T J, Sze S M. Mater. Today, 2016, 19(5): 254-264

    13. [13]

      GUO X, TAN Z H, YIN X B, LI H, CHEN L Q, GUO X X. Chin. Sci. Bull. , 2014, 59(30): 2926-2936
       

    14. [14]

      Jeong H, Shi L. J. Phys. D: Appl. Phys. , 2019, 52(2): 023003

    15. [15]

      Ravichandran V, Li C, Banagozar A, Yang J J, Xia Q F. Sci. China Inf. Sci. , 2018, 61(6): 060423

    16. [16]

      Zhang Y, Wang Z R, Zhu J D, Yang Y C, Rao M Y, Song W H, Zhuo Y, Zhang X M, Cui M L, Shen L L, Huang R, Yang J J. Appl. Phys. Rev. , 2020, 7(1): 011308

    17. [17]

      Zhu J D, Zhang T, Yang Y C, Huang R. Appl. Phys. Rev. , 2020, 7(1): 011312

    18. [18]

      ZHANG C X, CHEN Y, YI M D, ZHU Y, LI T F, LIU L T, WANG L Y, XIE L H, HUANG W. Sci. Sin. Inform. , 2018, 48(2): 115-142
       

    19. [19]

      Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J, Qian H. Nature, 2020, 577(7792): 641-646

    20. [20]

      Cheng L, Li Y, Yin K S, Hu S Y, Su Y T, Jin M M, Wang Z, Chang T C, Miao X S. Adv. Funct. Mater. , 2019, 29(49): 1905660

    21. [21]

      WANG Y H, LIU C, HUANG R, YANG Y C. Chin. Sci. Bull. , 2019, 65(10): 904-915
       

    22. [22]

      Cha J H, Yang S Y, Oh J, Choi S, Park S, Jang B C, Ahn W, Choi S Y. Nanoscale, 2020, 12(27): 14339-14368

    23. [23]

      Xia Q F, Yang J J. Nat. Mater. , 2019, 18(4): 309-323

    24. [24]

      Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F, Yang J J. Nat. Rev. Mater. , 2020, 5(3): 173-195

    25. [25]

      Huh W, Lee D, Lee C H. Adv. Mater. , 2020, 32(51): 2002092

    26. [26]

      Qian K, Nguyen V C, Chen T, Lee P S. Adv. Electron. Mater. , 2016, 2(4): 1500370

    27. [27]

      Zhao X N, Xu H Y, Wang Z Q, Lin Y, Liu Y C. InfoMat, 2019, 1: 183-210

    28. [28]

      SHAO Y J, SHEN J, GONG S K, CHEN W, ZHOU J. Chinese J. Inorg. Chem. , 2020, 36(11): 2093-2099
       

    29. [29]

      WU X F, YUAN L, HUANG K K, FENG S H. Chinese J. Inorg. Chem. , 2015, 31(9): 1726-1738
       

    30. [30]

      Zhao Q L, Xie Z J, Peng Y P, Wang K Y, Wang H D, Li X N, Wang H W, Chen J S, Zhang H, Yan X B. Mater. Horiz. , 2020, 7(6): 1495-1518

    31. [31]

      LIU Y C, LIN Y, WANG Z Q, XU H Y. Acta Phys. Sin. , 2019, 68(16): 168504
       

    32. [32]

      Choi B J, Torrezan A C, Strachan J P, Kotula P G, Lohn A J, Marinella M J, Li Z Y, Williams R S, Yang J J. Adv. Funct. Mater. , 2016, 26(29): 5290-5296

    33. [33]

      Zhu L G, Zhou J, Guo Z L, Sun Z M. J. Materiomics, 2015, 1(4): 285-295

    34. [34]

      Gao S, Yi X, Shang J, Liu G, Li R W. Chem. Soc. Rev. , 2019, 48(6): 1531-1565

    35. [35]

      Raeis H N, Lee J S. J. Electroceram. , 2017, 39(1/2/3/4): 223-238

    36. [36]

      Wang C Y, Wang C, Meng F H, Wang P F, Wang S, Liang S J, Miao F. Adv. Electron. Mater. , 2019, 6(2): 1901107

    37. [37]

      Xiao X Y, Hu J, Tang S, Yan K, Gao B, Chen H L, Zou D C. Adv. Mater. Technol. , 2020, 5(6): 1900914

    38. [38]

      Chen Q Y, Lin M, Wang Z W, Zhao X L, Cai Y M, Liu Q, Fang Y C, Yang Y C, He M, Huang R. Adv. Electron. Mater. , 2019, 5(9): 1800852

    39. [39]

      Zhou Y, Liu D N, Wang J H, Cheng Z Q, Liu L, Yang N, Liu Y X, Xia T, Liu X Y, Zhang X, Ye C, Xu Z, Xiong W, Chu P K, Yu X F. ACS Appl. Mater. Interfaces, 2020, 12(22): 25108-25114

    40. [40]

      Yan X B, Wang K Y, Zhao J H, Zhou Z Y, Wang H, Wang J J, Zhang L, Li X Y, Xiao Z A, Zhao Q L, Pei Y F, Wang G, Qin C Y, Li H, Lou J Z, Liu Q, Zhou P. Small, 2019, 15(25): 1900107

    41. [41]

      Shi Y Y, Liang X H, Yuan B, Chen V, Li H T, Hui F, Yu Z, Yuan F, Pop E, Wong H S P, Lanza M. Nat. Electron. , 2018, 1(8): 458-465

    42. [42]

      Qian K, Nguyen V C, Chen T, Lee P S. J. Mater. Chem. C, 2016, 4(41): 9637-9645

    43. [43]

      CHEN X P, HU S M, HU H L, YUE J L, KUANG Z J, HUANG X Z. Chinese J. Inorg. Chem. , 2020, 36(12): 2281-2288
       

    44. [44]

      Wang C F, Wang C H, Huang Z L, Xu S. Adv. Mater. , 2018, 30(50): e1801368

    45. [45]

      Aydın E B, Sezgintürk M K. TrAC Trends Anal. Chem. , 2017, 97: 309-315

    46. [46]

      Granqvist C G, Hultaker A. Thin Solid Films, 2002, 411(1): 1-5

    47. [47]

      Wang D T, Dai Y W, Xu J, Chen L, Sun Q Q, Zhou P, Wang P F, Ding S J, Zhang D W. IEEE Electron Device Lett. , 2016, 37(7): 878-881

    48. [48]

      Ge J, Zhang S, Liu Z Y, Xie Z K, Pan S S. Nanoscale, 2019, 11(14): 6591-6601

    49. [49]

      Raeis H N, Park Y, Lee J S. Adv. Funct. Mater. , 2018, 28(31): 1800553

    50. [50]

      Xiong W, Zhu L Q, Ye C, Ren Z Y, Yu F, Xiao H, Xu Z, Zhou Y, Zhou H, Lu H L. Adv. Electron. Mater. , 2020, 6(5): 1901402

    51. [51]

      Siddik A, Haldar P K, Garu P, Bhattacharjee S, Das U, Barman A, Roy A, Sarkar P K. J. Phys. D: Appl. Phys. , 2020, 53(29): 295103

    52. [52]

      Ren S X, Li Z H, Tang L Z, Su X, Zhang H, Zhang G L, Zhang H, Cao G Z, Zhao J J. Adv. Electron. Mater. , 2020, 6(5): 2000151

    53. [53]

      Shang J, Xue W, Ji Z, Liu G, Niu X, Yi X, Pan L, Zhan Q, Xu X H, Li R W. Nanoscale, 2017, 9(21): 7037-7046

    54. [54]

      Qian K, Tay R Y, Nguyen V C, Wang J X, Cai G F, Chen T P, Teo E H T, Lee P S. Adv. Funct. Mater. , 2016, 26(13): 2176-2184

    55. [55]

      Kim J H, Seong T Y, Ahn K J, Chung K B, Seok H J, Seo H J, Kim H K. Appl. Surf. Sci. , 2018, 440: 1211-1218

    56. [56]

      Cui H N, Teixeira V, Monteiro A. Vacuum, 2002, 67(3/4): 589-594

    57. [57]

      Boehme M, Charton C. Surf. Coat. Technol. , 2005, 200(1/2/3/4): 932-935

    58. [58]

      Jung T, Kim S, Song P. Surf. Coat. Technol. , 2010, 205: S318-S323

    59. [59]

      George J, Menon C S. Surf. Coat. Technol. , 2000, 132(1): 45-48

    60. [60]

      Hamberg I, Granqvist C G. J. Appl. Phys. , 1986, 60(11): R123-R160

    61. [61]

      Sawada Y, Kobayashi C, Seki S, Funakubo H. Thin Solid Films, 2002, 409(1): 46-50

    62. [62]

      Hong S J, Han J I. Curr. Appl. Phys. , 2006, 6: e206-e210

    63. [63]

      JIANG Z R. Development and Application of Materials, 2010, 25(4): 68-71
       

    64. [64]

      QIU Y, CHEN Y F, ZU C K, JIN Y L. Advanced Ceramics, 2016, 37(5): 303-324
       

    65. [65]

      LI X H, SONG K Q, CONG D L, ZHANG M, SUN C Y, WU H L, LI Z S. Surf. Technol. , 2020, 49(7): 126-132
       

    66. [66]

      ZHANG S G, HUANG B Y, FANG X H. Mater. Rep. , 1997, 11(4): 11-14
       

    67. [67]

      MA Y, KONG C Y. Journal of Chongqing University (Natural Science Edition), 2002, 25(8): 114-117
       

    68. [68]

      CHENG L S, SUN B S, ZHONG J M, HE L J, WANG D X, CHEN H M. Rare Met. Lett. , 2008, 27(3): 10-16
       

    69. [69]

      Kim H, Gilmore C M, Piqué A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B. J. Appl. Phys. , 1999, 86(11): 6451-6461

    70. [70]

      Yang S M, Sun B S, Liu Y, Zhu J P, Song J X, Hao Z H, Zeng X Y, Zhao X, Shu Y C, Chen J, Yi Ji H, He J L. Ceram. Int. , 2020, 46(5): 6342-6350

    71. [71]

      Thirumoorthi M, Thomas J P J. J. Asian Ceram. Soc. , 2018, 4(1): 124-132

    72. [72]

      Wang Y, Zhu L J, Hu Y F, Deng Z B, Lou Z D, Hou Y B, Teng F. Opt. Express, 2017, 25(7): 7719-7729

    73. [73]

      Abbas S, Kumar M, Kim J. Mater. Sci. Semicond. Process. , 2018, 88: 86-92

    74. [74]

      Aleksandrova M, Kurtev N, Videkov V, Tzanova S, Schintke S. Microelectron. Eng. , 2015, 145: 112-116

    75. [75]

      Zhang D, Tavakoliyaraki A, Wu Y, Swaaij R A C M M, Zeman M. Energy Procedia, 2011, 8: 207-213

    76. [76]

      Kim S S, Yoon Y C, Kim K H. J. Electroceram. , 2003, 10(2): 95-101

    77. [77]

      Won S J, Park J W, Lim K S, Kang S J, Hong Y H, Yang J H, Fang L, Sung G Y, Kim H K. Appl. Phys. Lett. , 2009, 95(13): 133508

    78. [78]

      Kavehei O, Cho K, Lee S, Kim S, Alsarawi S F, Abbott D, Eshraghian K. 54th International Midwest Symposium on Circuits and Systems (MWSCAS). Seoul: IEEE, 2011: 1-4

    79. [79]

      SUN B W, QIAN K, WANG Q P. Micro/nano Electronics and Intelligent Manufacturing, 2019, 1(4): 76-86
       

    80. [80]

      Xue W H, Li Y, Liu G, Wang Z R, Xiao W, Jiang K M, Zhong Z C, Gao S, Ding J, Miao X S, Xu X H, Li R W. Adv. Electron. Mater. , 2019, 6(2): 1901055

    81. [81]

      Yan X B, Li X Y, Zhou Z Y, Zhao J H, Wang H, Wang J J, Zhang L, Ren D L, Zhang X, Chen J S, Lu C, Zhou P, Liu Q. ACS Appl. Mater. Interfaces, 2019, 11(20): 18654-18661

    82. [82]

      Zeng F J, Guo Y Y, Hu W, Tan Y Q, Zhang X M, Feng J L, Tang X S. ACS Appl. Mater. Interfaces, 2020, 12(20): 23094-23101

    83. [83]

      Jaafar A H, Gray R J, Verrelli E, O'Neill M, Kelly S M, Kemp N T. Nanoscale, 2017, 9(43): 17091-17098

    84. [84]

      Gao S, Liu G, Yang H L, Hu C, Chen Q L, Gong G D, Xue W H, Yi X H, Shang J, Li R W. ACS Nano, 2019, 13(2): 2634-2642

    85. [85]

      Tan H W, Liu G, Yang H L, Yi X H, Pan L, Shang J, Long S B, Liu M, Wu Y H, Li R W. ACS Nano, 2017, 11(11): 11298-11305

    86. [86]

      Huang W, Hang P J, Wang Y, Wang K, Han S H, Chen Z R, Peng W B, Zhu Y Y, Xu M S, Zhang Y Q, Fang Y J, Yu X G, Yang D R, Pi X D. Nano Energy, 2020, 73: 104790

    87. [87]

      Xue W H, Ci W J, Xu X H, Liu G. Chin. Phys. B, 2020, 29(4): 048401

    88. [88]

      ZHANG J Q, WU X F, MA X Y, YUAN L, HUANG K K, FENG S H. Chinese J. Inorg. Chem. , 2018, 34(4): 784-790
       

    89. [89]

      Shang J, Liu G, Yang H L, Zhu X J, Chen X X, Tan H W, Hu B L, Pan L, Xue W H, Li R W. Adv. Funct. Mater. , 2014, 24(15): 2171-2179

    90. [90]

      Qian K, Tay R Y, Lin M F, Chen J, Li H, Lin J, Wang J, Cai G, Nguyen V C, Teo E H, Chen T, Lee P S. ACS Nano, 2017, 11(2): 1712-1718

    91. [91]

      Qian K, Cai G, Nguyen V C, Chen T, Lee P S. ACS Appl. Mater. Interfaces, 2016, 8(41): 27885-27891

    92. [92]

      Qian K, Han X, Li H, Chen T, Lee P S. ACS Appl. Mater. Interfaces, 2020, 12(4): 4579-4585

    93. [93]

      Sun B W, Han X, Xu R X, Qian K. ACS Appl. Electron. Mater. , 2020, 2(6): 1603-1608

    94. [94]

      Huang J S, Lin Y C, Tsai H W, Yen W C, Chen C W, Lee C Y, Chin T S, Chueh Y L. Adv. Electron. Mater. , 2015, 1(8): 1500061

    95. [95]

      Wang Y C, Hu L X, Wei X H, Zhuge F. Appl. Phys. Lett. , 2020, 116(22): 221602

    96. [96]

      Chen P H, Yang H Y, Su Y T, Tsou C M. J. Micromech. Microeng. , 2020, 30(4): 045003

    97. [97]

      Sawa A. Mater. Today, 2008, 11(6): 28-36

    98. [98]

      Waser R, Dittmann R, Staikov G, Szot K. Adv. Mater. , 2009, 21(25/26): 2632-2663

    99. [99]

      Zhou Z Y, Zhao J H, Chen A P, Pei Y F, Xiao Z A, Wang G, Chen J S, Fu G S, Yan X B. Mater. Horiz. , 2020, 7(4): 1106-1114

    100. [100]

      Pei Y, Zhou Z, Chen A P, Chen J, Yan X. Nanoscale, 2020, 12(25): 13531-13539

    101. [101]

      Matsukatova A N, Emelyanov A V, Minnekhanov A A, Sakharutov D A, Vdovichenko A Y, Kamyshinskii R A, Demin V A, Rylkov V V, Forsh P A, Chvalun S N, Kashkarov P K. Tech. Phys. Lett. , 2020, 46(1): 73-76

    102. [102]

      Liu D Q, Cheng H F, Wang G, Zhu X, Shao Z Z, Wang N N, Zhang C Y. IEEE Electron Device Lett. , 2013, 34(12): 1506-1508

    103. [103]

      Lee S H, Park H L, Kim M H, Kang S, Lee S D. ACS Appl. Mater. Interfaces, 2019, 11(33): 30108-30115

    104. [104]

      Zaheer M, Cai Y C, Waqas A B, Abbasi S F, Zhu G D, Cong C X, Qiu Z J, Liu R, Qin Y J, Zheng L R, Hu L G. Phys. Status Solidi RRL, 2020, 14(5): 2000050

    105. [105]

      Kamarozaman N S, Aznilinda Z, Herman S H, Bakar R A, Rusop M. 10th IEEE International Conference on Semiconductor Electronics. Kuala Lumpur: IEEE, 2012: 703-706

    106. [106]

      Wu S X, Ren L Z, Qing J, Yu F M, Yang K G, Yang M, Wang Y J, Meng M, Zhou W Q, Zhou X, Li S W. ACS Appl. Mater. Interfaces, 2014, 6(11): 8575-8579

    107. [107]

      Xue Q, Wang Y C, Wei X H. Appl. Surf. Sci. , 2019, 479: 469-474

    108. [108]

      Liu C Y, Shih Y R, Huang S J. Solid State Commun. , 2013, 159: 13-17

    109. [109]

      Mehonic A, Cueff S, Wojdak M, Hudziak S, Labbe C, Rizk R, Kenyon A. J. Nanotechnol. , 2012, 23(45): 455201

    110. [110]

      Tan Z H, Yang R, Terabe K, Yin X B, Zhang X D, Guo X. Adv. Mater. , 2016, 28(2): 377-384

    111. [111]

      Chen P H, Chang K C, Chang T C, Tsai T M, Pan C H, Chu T J, Chen M C, Huang H C, Lo I, Zheng J C, Sze S M. IEEE Electron Device Lett. , 2016, 37(3): 280-283

    112. [112]

      Chiang K K, Chen J S, Wu J J. ACS Appl. Mater. Interfaces, 2012, 4(8): 4237-45

    113. [113]

      Lin C Y, Chang K C, Chang T C, Tsai T M, Pan C H, Zhang R, Liu K H, Chen H M, Tseng Y T, Hung Y C, Syu Y E, Zheng J C, Wang Y L, Zhang W, Sze S M. IEEE Electron Device Lett. , 2015, 36(6): 564-566

    114. [114]

      Pan C H, Chang T C, Tsai T, Chang K C, Chu T J, Shih C C, Lin C Y, Chen P H, Wu H Q, Deng N, Qian H, Sze S M. IEEE Trans. Electron Devices, 2016, 63(12): 4737-4743

    115. [115]

      Zhao Y Y, Sun W J, Wang J, He J H, Li H, Xu Q F, Li N J, Chen D Y, Lu J M. Adv. Funct. Mater. , 2020, 30(39): 2004245

    116. [116]

      Zhou L, Yang S W, Ding G Q, Yang J Q, Ren Y, Zhang S R, Mao J Y, Yang Y C, Zhou Y, Han S T. Nano Energy, 2019, 58: 293-303

    117. [117]

      Goswami S, Rath S P, Thompson D, Hedstrom S, Annamalai M, Pramanick R, Ilic B R, Sarkar S, Hooda S, Nijhuis C A, Martin J, Williams R S, Goswami S, Venkatesan T. Nat. Nanotechnol. , 2020, 15(5): 380-389

    118. [118]

      Lubben M, Karakolis P, Ioannou S V, Normand P, Dimitrakis P, Valov I. Adv. Mater. , 2015, 27(40): 6202-6207

    119. [119]

      Lanza M, Wong H S P, Pop E, Ielmini D, Strukov D, Regan B C, Larcher L, Villena M A, Yang J J, Goux L, Belmonte A, Yang Y C, Puglisi F M, Kang J F, Magyari Kope B, Yalon E, Kenyon A, Buckwell M, Mehonic A, Shluger A, Li H T, Hou T H, Hudec B, Akinwande D, Ge R J, Ambrogio S, Roldan J B, Miranda E, Sune J, Pey K L, Wu X, Raghavan N, Wu E, Lu W D, Navarro G, Zhang W D, Wu H Q, Li R W, Holleitner A, Wurstbauer U, Lemme M C, Liu M, Long S B, Liu Q, Lv H B, Padovani A, Pavan P, Valov I, Jing X, Han T T, Zhu K C, Chen S C, Hui F, Shi Y Y. Adv. Electron. Mater. , 2019, 5(1): 1800143

    120. [120]

      de Jong M P, Simons D P L, Reijme M A, van Ijzendoorn L J, van der Gon A W D, de Voigt M J A, Brongersma H H, Gymer R W. Synth. Met. , 2000, 110(1): 1-6

    121. [121]

      Lee S T, Gao Z Q, Hung L S. Appl. Phys. Lett. , 1999, 75(10): 1404-1406

    122. [122]

      Gallardo D E, Bertoni C, Dunn S, Gaponik N, Eychmüller A. Adv. Mater. , 2007, 19(20): 3364-3367

    123. [123]

      Wu X J, Xu H H, Wang Y, Rogach A L, Shen Y Z, Zhao N. Semicond. Sci. Technol. , 2015, 30(7): 074002

    124. [124]

      Busby Y, Crespo M N, Girleanu M, Brinkmann M, Ersen O, Pireaux J J. Org. Electron. , 2015, 16: 40-45

    125. [125]

      Yang Y C, Huang R. Nat. Electron. , 2018, 1(5): 274-287

    126. [126]

      Yang Y, Gao P, Li L, Pan X, Tappertzhofen S, Choi S, Waser R, Valov I, Lu W D. Nat. Commun. , 2014, 5: 4232

    127. [127]

      Kumar D, Aluguri R, Chand U, Tseng T Y. Nanotechnol. , 2018, 29(12): 125202

    128. [128]

      Chen Y S, Lee H Y, Chen P S, Wu T Y, Wang C C, Tzeng P J, Chen F, Tsai M J, Lien C. IEEE Electron Device Lett. , 2010, 31(12): 1473-1475

  • 加载中
    1. [1]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    8. [8]

      Lili Wang Chunxia Chen Lina Jia Li Guo Jingjing Cao . Exploration and Practice in Innovative and Interesting Scientific Research Skills Training for Wood Magnetization. University Chemistry, 2024, 39(6): 246-252. doi: 10.3866/PKU.DXHX202310088

    9. [9]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(72)
  • Abstract views(2565)
  • HTML views(880)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return