Citation: Xin HE, Shun-Lin ZHANG, Tian-Yu XIAO, Dun-Ru ZHU. Two Metal-Organic Frameworks Built from 2, 2'-Dimethyl-4, 4'-biphenyldicarboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(5): 945-952. doi: 10.11862/CJIC.2021.079 shu

Two Metal-Organic Frameworks Built from 2, 2'-Dimethyl-4, 4'-biphenyldicarboxylic Acid

  • Corresponding author: Dun-Ru ZHU, zhudr@njtech.edu.cn
  • Received Date: 6 December 2020
    Revised Date: 24 December 2020

Figures(8)

  • Two metal-organic frameworks (MOFs), [Ni(μ2-H2O)(L)(DMF)(H2O)]·0.5H2O (1) and[Cd2.5(L)(trz)3(H2O)2]·2.5DMF (2) (L=2, 2'-dimethyl-4, 4'-biphenyldicarboxylic acid, DMF=N, N-dimethylformamide, Htrz=1, 2, 4-triazole), have been synthesized and characterized by FT-IR, thermogravimetric analysis (TGA), powder and single crystal X-ray diffraction. MOF 1 crystallizes in monoclinic system with a space group P21/c. Ni(Ⅱ) ion adopts an elongated[NiO6] octahedron as a 4-connected node and is linked by μ2-H2O and L2- ligands to generate a 2D sql topological network. MOF 2 crystallizes in monoclinic system with a space group C2/m and contains three crystallographically different Cd(Ⅱ) ions. Each Cd(Ⅱ) ion shows a distorted octahedral geometry and three Cd(Ⅱ) ions are connected by trz- co-ligands in a μ1, 2, 4-bridging mode to form a 2D kgd layer with (3, 6) topology in the ab plane. These layers are further pillared by the L2- ligands along the c axis to produce a binodal (4, 8)-connected 3D flu framework. The TGA showed that 1 and 2 were stable below 390 and 230℃, respectively. CCDC: 2042076, 1; 2042077, 2.
  • 加载中
    1. [1]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341: 1230444  doi: 10.1126/science.1230444

    2. [2]

      Wang X, Qin T, Bao S S, Zhang Y C, Shen X, Zheng L M, Zhu D R. J. Mater. Chem. A, 2016, 4: 16484-16489  doi: 10.1039/C6TA06792A

    3. [3]

      Zhu J, Usov P M, Xu W Q, Celis-Salazar P J, Lin S Y, Kessinger M C, Landaverde-Alvarado C, Cai M, May A M, Slebodnick C, Zhu D R, Senanayake S D, Morris A J. J. Am. Chem. Soc. , 2018, 140: 993-1003  doi: 10.1021/jacs.7b10643

    4. [4]

      Chiong J A, Zhu J, Bailey J B, Kalaj M, Subramanian R H, Xu W, Cohen S M, Tezcan F A. J. Am. Chem. Soc. , 2020, 142: 6907-6912  doi: 10.1021/jacs.0c01626

    5. [5]

      Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Science, 2002, 295: 469-472  doi: 10.1126/science.1067208

    6. [6]

      Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Science, 2012, 336: 1018-1023  doi: 10.1126/science.1220131

    7. [7]

      XU H, GONG J, MA J H, XU Y, SHEN X, ZHU D R. Chinese J. Inorg. Chem. , 2012, 28(10): 2229-2235
       

    8. [8]

      Wang X Z, Zhu D R, Xu Y, Yang J, Shen X, Zhou J, Fei N, Ke X K, Peng L M. Cryst. Growth Des. , 2010, 10: 887-894  doi: 10.1021/cg9012262

    9. [9]

      Zhang H J, Wang X Z, Zhu D R, Song Y, Xu Y, Xu H, Shen X, Gao T, Huang M X. CrystEngComm, 2011, 13: 2586-2592  doi: 10.1039/c0ce00766h

    10. [10]

      Gao T, Wang X Z, Gu H X, Xu Y, Shen X, Zhu D R. CrystEng-Comm, 2012, 14: 5905-5913  doi: 10.1039/c2ce25442e

    11. [11]

      Xu H, Bao W W, Xu Y, Liu X L, Shen X, Zhu D R. CrystEngComm, 2012, 14: 5720-5722  doi: 10.1039/c2ce25739d

    12. [12]

      Luo R, Xu H, Gu H X, Wang X, Xu Y, Shen X, Bao W W, Zhu D R. CrystEngComm, 2014, 16: 784-796  doi: 10.1039/C3CE41428K

    13. [13]

      Liu X L, Wang X, Gao T, Xu Y, Shen X, Zhu D R. CrystEngComm, 2014, 16: 2779-2787  doi: 10.1039/c3ce42553c

    14. [14]

      Qin T, Gong J, Ma J H, Wang X, Wang Y H, Xu Y, Shen X, Zhu D R. Chem. Commun. , 2014, 50: 15886-15889  doi: 10.1039/C4CC06588C

    15. [15]

      Wang X, Zhao J, Zhao Y, Xu H, Shen X, Zhu D R, Jing S. Dalton Trans. , 2015, 44: 9281-9288  doi: 10.1039/C5DT00602C

    16. [16]

      Zhao J, Wang X, Zhao J, Luo R, Shen X, Zhu D R, Jing S. CrystEngComm, 2016, 18: 863-867  doi: 10.1039/C5CE02417J

    17. [17]

      Zhao J, He X, Zhang Y C, Zhu J, Shen X, Zhu D R. Cryst. Growth Des. , 2017, 17: 5524-5532  doi: 10.1021/acs.cgd.7b01061

    18. [18]

      FENG S F, HE X, QIN T, ZHANG S L, ZHU D R. Chinese J. Inorg. Chem. , 2017, 33(11): 2095-2102  doi: 10.11862/CJIC.2017.241

    19. [19]

      Zhang Y C, Wu Y H, He X, Ma J H, Shen X, Zhu D R. Acta Crystallogr. Sect. C, 2018, C74: 256-262

    20. [20]

      Zhang S L, Gao S, Wang X, He X, Zhao J, Zhu D R. Acta Crystallogr. Sect. B, 2019, B75: 1060-1068

    21. [21]

      Furukawa H, Kim J, Ockwig N W, O'Keeffe M, Yaghi O M. J. Am. Chem. Soc. , 2008, 130: 11650-11661  doi: 10.1021/ja803783c

    22. [22]

      Xie Y, Wang T T, Zeng H P. Z. Anorg. Allg. Chem. , 2014, 640: 1741-1744  doi: 10.1002/zaac.201300680

    23. [23]

      Yuan S, Chen Y P, Qin J, Lu W, Wang X, Zhang Q, Bosch M, Liu T F, Lian X, Zhou H C. Angew. Chem. Int. Ed. , 2015, 54: 14696-14700  doi: 10.1002/anie.201505625

    24. [24]

      Yuan S, Zou L, Li H, Chen Y P, Qin J, Zhang Q, Lu W, Hall M B, Zhou H C. Angew. Chem. , 2016, 128: 10934-10938  doi: 10.1002/ange.201604313

    25. [25]

      Song T, Yu J C, Cui Y J, Yang Y, Qian G D. Dalton Trans. , 2016, 45: 4218-4223  doi: 10.1039/C5DT03466C

    26. [26]

      Chen C X, Qiu Q F, Cao C C, Pan M, Wang H P, Jiang J J, Wei Z W, Zhu K, Li G Q, Su C Y. Chem. Commun. , 2017, 53: 11403-11406  doi: 10.1039/C7CC06352K

    27. [27]

      Pang J, Yuan S, Du D, Lollar C, Zhang L, Wu M, Yuan D, Zhou H C, Hong M C. Angew. Chem. Int. Ed. , 2017, 56: 14622-14626  doi: 10.1002/anie.201709186

    28. [28]

      Dolgopolova E A, Ejegbavwo O A, Martin C R, Smith M D, Setyawan W, Karakalos S G, Henager C H, Loye H C, Shustova N B. J. Am. Chem. Soc. , 2017, 139: 16852-16861  doi: 10.1021/jacs.7b09496

    29. [29]

      Pang J D, Yuan S, Qin J S, Wu M, Lollar C T, Li J, Huang N, Li B, Zhang P, Zhou H C. J. Am. Chem. Soc. , 2018, 140: 12328-12332  doi: 10.1021/jacs.8b07411

    30. [30]

      Ejegbavwo O A, Martin C R, Olorunfemi O A, Leith G A, Ly R T, Rice A M, Dolgopolova E A, Smith M D, Karakalos S G, Birkner N, Powell B A, Pandey S, Koch R J, Misture S T, Loye H C, Phillpot S R, Brinkman K S, Shustova N B. J. Am. Chem. Soc. , 2019, 141: 11628-11640  doi: 10.1021/jacs.9b04737

    31. [31]

      Berseneva A A, Martin C R, Galitskiy V A, Ejegbavwo O A, Leith G A, Ly R T, Rice A M, Dolgopolova E A, Smith M D, Loye H C, Diprete D P, Jake W, Amoroso J W, Shustova N B. Inorg. Chem. , 2020, 59: 179-183  doi: 10.1021/acs.inorgchem.9b01310

    32. [32]

      He X, Wang X, Xiao T Y, Zhang S L, Zhu D R. Inorg. Chem. , 2021, 60: 9-13  doi: 10.1021/acs.inorgchem.0c02913

    33. [33]

      Blaszykowski C, Aktoudianakis E, Bressy C, Alberico D, Lautens M. Org. Lett. , 2006, 8: 2043-2045  doi: 10.1021/ol060447y

    34. [34]

      Burrows A D, Frost C G, Mahon M F, Richardson C. Chem. Commun. , 2009, 45: 4218-4220

    35. [35]

      Sheldrick G M. Acta Crystallogr. Sect. A, 2008, A64: 112-122

    36. [36]

      Spek A L. Acta Crystallogr. Sect. C, 2015, C71: 9-18

    37. [37]

      Spek A L. Acta Crystallogr. Sect. D, 2009, D65: 148-155

    38. [38]

      Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D. Coord. Chem. Rev. , 2005, 249: 1693-1708  doi: 10.1016/j.ccr.2005.03.031

    39. [39]

      Lin Z J, Han L W, Wu D S, Huang Y B, Cao R. Cryst. Growth Des. , 2013, 13: 255-263  doi: 10.1021/cg301405r

    40. [40]

      Xu Y C, Chen Y, Qiu H J, Zeng X S, Xu H L, Li J, Zeng Y F, Xiao D R. CrystEngComm, 2016, 18: 8182-8193  doi: 10.1039/C6CE01287F

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    10. [10]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    11. [11]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    12. [12]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    18. [18]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    19. [19]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(9)
  • Abstract views(814)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return