Citation: Wen-yuan XU, Su-ying LI, Yan WANG, Yong-bing CHENG, Meng-sha SHEN, Lin HU, Zan-ru GUO, Meng-yin LIAO, Jia-xi PENG, Xi CHEN. Disproportionation Mechanism of Methylchlorosilanes Confinement Catalysis by MIL-53(Al)[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(4): 615-622. doi: 10.11862/CJIC.2021.072 shu

Disproportionation Mechanism of Methylchlorosilanes Confinement Catalysis by MIL-53(Al)

  • Corresponding author: Wen-yuan XU, xwyktz@163.com Jia-xi PENG,  Xi CHEN, 
  • Received Date: 28 July 2020
    Revised Date: 27 January 2021

Figures(8)

  • Using B3LYP/6-311++G(3df, 2pd) method, the activity difference of three sites of MIL-53(Al) for the preparation of dimethyldichlorosilane was calculated. The change of reaction channels, energy, virtual modes of transition states, intrinsic response coordinates(IRC) and the distance between key atoms were discussed, and the same conclusion was drawn. The activation energy of the rate-determining-step in main reaction were 157.15, 155.31 and 123.44 kJ·mol-1, and those in the side reaction were 206.48, 214.87 and 166.07 kJ·mol-1, respectively. It can be seen that the order of catalytic activity of three sites was 3 > 1 > 2. The catalytic disproportionation activity of MIL-53(Al) is attributed to the Brønsted acid H on its catalytic center(Al—O—H). The difference in activity results from the difference in their coordination environment.
  • 加载中
    1. [1]

      Xu W Y, Yan F, Yang S M. Appl. Organomet. Chem. , 2019, 34(3): 27-49

    2. [2]

      Chen X, Jia L H, Wang Y L. J. Colloid Interface Sci. , 2013, 404(2): 16-23

    3. [3]

      Randall J P, Meador M A, Jana S. ACS Appl. Mater. Interfaces, 2011, 3(3): 613-626  doi: 10.1021/am200007n

    4. [4]

      Rao A V, Hegde N D, Hirashima H. J. Colloid Interface Sci. , 2007, 305(1): 124-132  doi: 10.1016/j.jcis.2006.09.025

    5. [5]

      Zhao Y A, Liang Y, Zhao X. Prog. Nat. Sci. , 2011, 21(4): 330-335  doi: 10.1016/S1002-0071(12)60065-3

    6. [6]

      Zhang P, Duan J H, Chen G H. Sci. Rep. , 2015, 5(1): 240-249

    7. [7]

      Wu X, Zhang W, Li Z. J. Nanopart. Res. , 2019, 21(11): 1-13

    8. [8]

      Xu W Y, Li XY, Yang M. Struct. Chem. , 2018, 37(4): 543-550

    9. [9]

      XU W Y, YAO C J, XU Y C, HONG S G. Journal of Zhengzhou University (Engineering Edition), 2017, 38(6): 92-96
       

    10. [10]

      XU W Y, WANG L W, WAN H H, FANG Z L. Journal of Zhengzhou University (Engineering Edition), 2015, 36(5): 25-29  doi: 10.3969/j.issn.1671-6833.2015.05.006

    11. [11]

      Xu W Y, Li X Y, Yang M, Yang S M, Fang Z L, Hong S G. Chin. J. Struct. Chem. , 2018, 37(4): 543-550

    12. [12]

      Xu W Y, Kuang X, Yan F, Wang Y, Li S Y, Hu L. Chin. J. Struct. Chem. , 2020, 39(6): 1146-1156

    13. [13]

      Vanduyfhuys L, Vandenbrande S, Wieme J. J. Comput. Chem. , 2018, 39(16): 999-1011  doi: 10.1002/jcc.25173

    14. [14]

      Vanduyfhuys L, Vandenbrande S, Verstraelen T, Schmid R, Waroquier M, Van S V. J. Comput. Chem. , 2015, 36(13): 1015-1027  doi: 10.1002/jcc.23877

    15. [15]

      Vanduyfhuys L, Verstraelen T, Vandichel M, Waroquier M, Van S V. J. Chem. Theory Comput. , 2012, 8(9): 3217-3231  doi: 10.1021/ct300172m

    16. [16]

      Ravon U, Chaplais G, Chizallet C, Seyyedi B, Bonino F, Bordiga S, Bats N, Farrusseng D. ChemCatChem, 2010, 2(10): 1235-1238  doi: 10.1002/cctc.201000055

    17. [17]

      Emam H E, Ahmed H B, Eldeib H R. J. Colloid Interface Sci. , 2019, 5(2): 193-205

    18. [18]

      Szécsényi Á, Li G, Gascon J; Pidko E A. Chem. Sci. , 2018, 9(14): 6765-6773

    19. [19]

      Khudozhitkov A E, Arzumanov S S, Kolokolov D I. Microporous Mesoporous Mater. , 2020, 15(300): 31-42

    20. [20]

      Liu J F, Mu J C, Qin R X, et al. Pet. Sci. , 2019, 16(4): 901-911  doi: 10.1007/s12182-019-0334-6

    21. [21]

      Jessy L, Zhang J S. Eur. J. Mass Spectrom. , 2014, 20(5): 409-417  doi: 10.1255/ejms.1290

    22. [22]

      Liu Y, Her J, Dailly A, et al. J. Am. Chem. Soc. , 2008, 130(35): 11813-11818  doi: 10.1021/ja803669w

    23. [23]

      Mohammed M H, Jarullah B A, Hanoon F H. Solid State Commun. , 2020, 12(5): 316-326

    24. [24]

      LI R, LIU X Y, GUO Y H, JI Y Q. Science & Technology Review, 2012, 30(30): 25-28  doi: 10.3981/j.issn.1000-7857.2012.30.002

    25. [25]

      Bala A M, Killian W G. J. Phys. Chem. A, 2020, 124(16): 3077-3089  doi: 10.1021/acs.jpca.9b11245

    26. [26]

      Frisch M J, Pople J A, Binkley J S. J. Chem. Phys. , 1984, 80(7): 3265-3269  doi: 10.1063/1.447079

    27. [27]

      Clark T, Chandrasekhar J, Spitznagel G W, Schleyer P V R. J. Comput. Chem. , 1983, 4(3): 294-301  doi: 10.1002/jcc.540040303

    28. [28]

      Head-Gordon M, Pople J A, Frisch M J. Chem. Phys. Lett. , 1988, 153(6): 503-506  doi: 10.1016/0009-2614(88)85250-3

    29. [29]

      Rahal M, Bouabdallah I, Hajbi A E. Comput. Theor. Chem. , 2013, 10(17): 182-187

    30. [30]

      Zhou C, Yang T, Fan G. Theor. Chem. Acc. , 2020, 139(1): 10-18  doi: 10.1007/s00214-019-2523-1

    31. [31]

      Ceponkus J, Sablinskas V, Aleksa V, Pucetaite M, Platakyte R, Reed C W, Cotter C, Guirgis G. Vib. Spectrosc. , 2015, 81(1): 136-143

    32. [32]

      Wong Ng W, Nguyen H G, Espinal L, Siderius D W, Kaduk J A. Powder Diffr. , 2019, 33(3): 216-226

    33. [33]

      Wang X, Jacobson A J. J. Solid State Chem. , 2016, 236(3): 230-235

    34. [34]

      ZHOU S, DONG Y M, JIANG H, LI F, GONG H. Chinese J. Inorg. Chem. , 2020, 36(4): 636-643
       

    35. [35]

      Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. Chem. Eur. J. , 2004, 10(6): 1373-1382  doi: 10.1002/chem.200305413

    36. [36]

      Chibani S, Chiter F, Cantrel L, Paul J F. J. Phys. Chem. C, 2017, 121(45): 25283-25291  doi: 10.1021/acs.jpcc.7b08903

    37. [37]

      ZHANG Y L, ZHANG G. Chin. J. Org. Chem. , 2014, 34(1): 178-189
       

    38. [38]

      HU S F, WANG Y, MA J H, LI R F. Chinese J. Inorg. Chem. , 2019, 35(12): 2253-2259  doi: 10.11862/CJIC.2019.263
       

    39. [39]

      Chaplais G, Simonmasseron A, Porcher F. Phys. Chem. Chem. Phys. , 2009, 11(26): 5241-5245  doi: 10.1039/b822163d

    40. [40]

      Ramsahye N A, Maurin G, Bourrelly S. Phys. Chem. Chem. Phys. , 2007, 9(9): 1059-1063  doi: 10.1039/B613378A

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    16. [16]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    17. [17]

      Yuhao Chen Zhuo Cheng Qijun Hu Jian Pei . 酸碱理论的发展历程. University Chemistry, 2025, 40(8): 368-375. doi: 10.12461/PKU.DXHX202412001

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

Metrics
  • PDF Downloads(10)
  • Abstract views(1846)
  • HTML views(377)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return