Citation: Lan ZHANG, Xi-gui WANG. Effect of TiO2 on Luminescent Properties of ZnO/ZnS: Eu3+ Phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(4): 601-607. doi: 10.11862/CJIC.2021.071 shu

Effect of TiO2 on Luminescent Properties of ZnO/ZnS: Eu3+ Phosphor

  • Corresponding author: Lan ZHANG, 15848421119@139.com
  • Received Date: 7 July 2020
    Revised Date: 13 January 2021

Figures(10)

  • ZnO/ZnS/2TiO2: Eu3+ phosphor was prepared by sol-gel-precipitation method. The structure, composition, morphology and luminescent properties were characterized by used X-ray diffraction(XRD), infrared spectroscopy(IR), transmission electron microscope(TEM) and fluorescence spectrum. The mechanism of luminescence was investigated. The results showed that phosphor changed into a stable structure when the temperature was above 600 ℃, and structure of the irregular shape. The phosphor mainly composed of ZnO, TiO2 and ZnS. IR spectra show that the structure of Ti—O—Ti bridge oxygen bond network is conducive to pass energy among the Eu3+. Fluorescence spectra show that the addition of TiO2 can remove the inhibition of Eu3+ spectral melody and improve the luminescence properties of phosphor. And the best luminescence performance was obtained in the phosphor prepared with nZn(NO3)2: nTiO2=1:2. The strongest emission peak was 5D07F2 electric dipole transition at 612 nm, and the optimum annealing temperature was 600 ℃.
  • 加载中
    1. [1]

      PENG H X, LIU Z Y, HU C Y, ZHANG L, TIAN X Y, PENG Y X. Chinese J. Inorg. Chem. , 2018, 34(10): 1851-1856  doi: 10.11862/CJIC.2018.241
       

    2. [2]

      LI S L, LÜ C, MIN X, FANG M H, HUANG C H, LIU Y G. Chinese J. Inorg. Chem. , 2017, 33(5): 761-768
       

    3. [3]

      WANG F, TIAN Y G, ZHANG Q. Chinese J. Inorg. Chem. , 2019, 35(1): 25-33
       

    4. [4]

      TIAN Y, LI L, XIN Z C, ZHANG W Z, XU Y M. Chinese J. Inorg. Chem. , 2019, 35(3): 493-504
       

    5. [5]

      Hitkari G, Singh S, Pandey G. Trans. Nonferrous Met. Soc. China, 2018, 28(7): 1386-1396  doi: 10.1016/S1003-6326(18)64777-6

    6. [6]

      MEI Q F, ZHANG F Y, WANG N, LU W S, SU X T, WANG W, WU R L. Chinese J. Inorg. Chem. , 2019, 35(8): 1321-1339
       

    7. [7]

      LIU S Q, XIE M J, GUO X F, JI W J. Chinese J. Inorg. Chem. , 2020, 36(2): 317-323
       

    8. [8]

      XIE Y T, TAN J, WANG Y F, YU J, LIU J. Chinese J. Inorg. Chem. , 2018, 34(12): 2153-2160  doi: 10.11862/CJIC.2018.267
       

    9. [9]

      ZHANG G X. Journal of Functional Materials and Devices, 2014, 20(5): 158-163
       

    10. [10]

      ZHANG J C, CHEN H W, WU T Y, LI K Y, JIN Y X. Chin. J. Lumin. , 2019, 40(7): 879-884
       

    11. [11]

      LI J J, WANG X G. Chin. J. Lumin. , 2012, 33(6): 601-605
       

    12. [12]

      CHENG C H, WANG X J, MENG L L, ZHANG L X, LIANG L F. Chin. J. Lumin. , 2018, 39(7): 923-929
       

    13. [13]

      Binnemans K, Van Deun R, Görller Walrand C, Adam J L. J. Non-Cryst. Solids, 1998, 238: 11-29

    14. [14]

      WANG X G, QI X, BO S L, NA M L. Spectroscopy and Spectral Analysis, 2011, 31(5): 1193-1196
       

    15. [15]

      WANG L X. Chinese J. Inorg. Chem. , 2017, 33(10): 1741-1747
       

    16. [16]

      ZHANG R X, WANG T, JING Y J, ZHU Y H, WANG H B. Mater. Rep. , 2008, 22(8): 286-289
       

    17. [17]

      WANG F, LIU D C, YANG B, LIU L J, DAI Y N. The Chinese Journal of Nonferrous Metals, 2012, 22(4): 1107-1112
       

    18. [18]

      LIU Q, YANG Q H, ZHAO G G, LU S Z, ZHANG H J. Chinese J. Inorg. Chem. , 2013, 29(4): 798-802
       

    19. [19]

      SHI Y F, WANG W, CHEN K Z. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2012, 33(1): 5-8
       

    20. [20]

      LUO K J, ZHANG S L, SU Y W, LI Q. Chinese J. Inorg. Chem. , 2016, 32(10): 1747-1756
       

    21. [21]

      ZHANG H M, ZHANG H R, LIU Y L, DONG H W, HUANG J F, CHEN S Y, LEI B F. Chinese J. Inorg. Chem. , 2015, 31(8): 1489-1494
       

    22. [22]

      Liu Y F, Hou G F, Yu Y H, Yan P F, Li J Y, Li G M, Gao J S. Cryst. Growth Des. , 2013, 10: 1021-1029

    23. [23]

      Phaomei G, Singh W R, Ningthoujam R S. J. Lumin. , 2011, 131(6): 1164-1171

    24. [24]

      Gangwar P, Pandey M, Sivakumar S, Pala R G S, Parthasarathy G. Cryst. Growth Des. , 2013, 13: 2344-2349

    25. [25]

      Sailaja S, Reddy B S. Ceram. Int. , 2011, 37: 1781-1787

    26. [26]

      YU Y H, XIA M, WU W J. China Ceramics, 2012, 48(7): 51-53, 59
       

    27. [27]

      Li X, Cao J, Yang L L, Wei M B, Liu X Y, Liu Q Y, Hong Y Z, Zhou Y, Yang J H. Dalton Trans. , 2019, 48: 2442-2454

    28. [28]

      ZHAO Y, LI H X. Journal of Synthetic Crystals, 2019, 48(3): 539-544
       

    29. [29]

      JING L Q, SUN X J, CAI W M, LI X Q, FU H G, HOU H G, FAN N Y. Acta Chim. Sinica, 2003, 61(8): 1241-1245
       

    30. [30]

      GUO N, GUO K, SHENG Y, ZOU H F. Journal of Jilin University (Science Edition), 2009, 47(2): 367-375
       

    31. [31]

      CAO J L, WANG X G. Chinese J. Inorg. Chem. , 2018, 34(2): 325-330
       

    32. [32]

      NIU X P, XU J P, ZHANG X S, CHENG X M, LUO C Y, LI K X, LI L. Journal of Optoelectronics·Laser, 2012, 23(6): 1509-1512
       

    33. [33]

      Dexter D L. J. Chem. Phys. , 1953, 21(5): 8362850

  • 加载中
    1. [1]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    6. [6]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    16. [16]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    20. [20]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

Metrics
  • PDF Downloads(10)
  • Abstract views(1677)
  • HTML views(413)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return