Citation: Lang-Lang YANG, Fan-Hui MENG, Peng ZHANG, Xiao-Tong LIANG, Zhong LI. Catalytic Performance for CO2 Hydrogenation to Light Olefins over ZrCdOx/SAPO-18 Bifunctional Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(3): 448-456. doi: 10.11862/CJIC.2021.067 shu

Catalytic Performance for CO2 Hydrogenation to Light Olefins over ZrCdOx/SAPO-18 Bifunctional Catalyst

Figures(7)

  • ZrCdOx metal oxides with various Zr/Cd atomic ratios (nZr/nCd) were prepared by parallel coprecipitation method, the sheet-like SAPO-18 zeolites with molar ratio of SiO2 to Al2O3 (nSiO2/nAl2O3) of 0.1 and 0.01 were hydrothermally synthesized. The metal oxide and SAPO-18 were physically mixed to prepare ZrCdOx/SAPO-18 bifunctional catalyst, and to study the catalytic performance for CO2 hydrogenation to light olefins. Transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed desorption of CO2 (CO2TPD), temperature programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the catalysts. Compared with the sole ZrO2, the introduction of CdO decreased the BET (Brunauer Emmett Teller) surface area of ZrCdOx. The Zr8Cd1 oxide prepared with nZr/nCd=8 exhibited the small amorphous particles, the strong synergetic effect between Zr and Cd led to the generation of more oxygen vacancies in ZrCdOxoxide, which was beneficial to the adsorption and activation of CO2. The effect of mass ratio of Zr8Cd1 oxide to SAPO-18 (nSiO2/nAl2O3=0.1), and the reaction temperature, pressure and space velocity on catalytic performance were investigated, and the optimal reaction conditions were obtained. Moreover, it is also found that when the ratio of nSiO2/nAl2O3 decreased from 0.1 to 0.01, the content of Brønsted acid reduced, the molar ratio of olefins to paraffin increased from 18.6 to 37.2; however, the content of by-product CO increased rapidly, and the space-time yield of light olefins decreased remarkably.
  • 加载中
    1. [1]

      Guo L S, Sun J, Ge Q J, Tsubaki N. J. Mater. Chem. A, 2018, 6(46): 23244-23262  doi: 10.1039/C8TA05377D

    2. [2]

      Ye R P, Ding J, Gong W B, Argyle M D, Zhong Q, Wang Y J, Russell C K, Xu Z H, Russell A G, Li Q H, Fan M H, Yao Y G. Nat. Commun. , 2019, 10(1): 5698-5713  doi: 10.1038/s41467-019-13638-9

    3. [3]

      Ma Z Q, Porosoff M D. ACS Catal. , 2019, 9(3): 2639-2656  doi: 10.1021/acscatal.8b05060

    4. [4]

      Ronda-Lloret M, Rothenberg G, Shiju N R. ChemSusChem, 2019, 12(17): 3896-3914  doi: 10.1002/cssc.201900915

    5. [5]

      Gao J J, Jia C, Liu B. Catal. Sci. Technol. , 2017, 7(23): 5602-5607  doi: 10.1039/C7CY01549F

    6. [6]

      Sedighi M, Mohammadi M. J. CO2 Util. , 2019, 35: 236-244

    7. [7]

      Tan L, Zhang P P, Cui Y, Suzuki Y, Li H J, Guo Li S, Yang G H, Tsubaki N. Fuel Process. Technol. , 2019, 196: 106174-106179  doi: 10.1016/j.fuproc.2019.106174

    8. [8]

      Hu S, Liu M, Ding F S, Song C S, Zhang G L, Guo X W. J. CO2 Util. , 2016, 15: 89-95  doi: 10.1016/j.jcou.2016.02.009

    9. [9]

      Numpilai T, Witoon T, Chanlek N, Limphirat W, Bonura G, Chareonpanich M, Limtrakul J. Appl. Catal. A, 2017, 547: 219-229  doi: 10.1016/j.apcata.2017.09.006

    10. [10]

      Liu X L, Wang M H, Zhou C, Zhou W, Cheng K, Kang J C, Zhang Q H, Deng W P, Wang Y. Chem. Commun. , 2018, 54(2): 140-143  doi: 10.1039/C7CC08642C

    11. [11]

      Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal. , 2017, 7(12): 8544-8548  doi: 10.1021/acscatal.7b03251

    12. [12]

      Liu X L, Wang M H, Yin H R, Hu J T, Cheng K, Kang J C, Zhang Q H, Wang Y. ACS Catal. , 2020, 10(15): 8303-8314  doi: 10.1021/acscatal.0c01579

    13. [13]

      Gao P, Dang S H, Li S G, Bu X N, Liu Z Y, Qiu M H, Yang C G, Wang H, Zhong L S, Han Y, Liu Q, Wei W, Sun Y H. ACS Catal. , 2018, 8(1): 571-578  doi: 10.1021/acscatal.7b02649

    14. [14]

      Dang S S, Li S G, Yang C G, Chen X Q, Li X P, Zhong L S, Gao P, Sun Y H. ChemSusChem, 2019, 12: 1-11  doi: 10.1002/cssc.201802948

    15. [15]

      LIU R, ZHA F, YANG A M, CHANG Y. Chem. J. Chinese Universities, 2016, 37(5): 964-971
       

    16. [16]

      Dang S S, Gao P, Liu Z Y, Chen X Q, Yang C G, Wang H, Zhong L S, Li S G, Sun Y H. J. Catal. , 2018, 364: 382-393  doi: 10.1016/j.jcat.2018.06.010

    17. [17]

      Wang J J, Tang C Z, Li G N, Han Z, Li Z L, Liu H L, Cheng F, Li C. ACS Catal. , 2019, 9(11): 10253-10259  doi: 10.1021/acscatal.9b03449

    18. [18]

      Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X H. Science, 2016, 351(6277): 1065-1068  doi: 10.1126/science.aaf1835

    19. [19]

      Zhang P, Meng F H, Li X J, Yang L L, Ma P C, Li Z. Catal. Sci. Technol. , 2019, 9(20): 5577-5581  doi: 10.1039/C9CY01348B

    20. [20]

      Sun Q M, Xie Z K, Yu J H. Natl. Sci. Rev. , 2018, 5(4): 542-558  doi: 10.1093/nsr/nwx103

    21. [21]

      LI J F, FAN W B, DONG M, HE Y, QIN Z F, WANG J G. Chem. J. Chinese Universities, 2011, 32(3): 765-771
       

    22. [22]

      CUI X Y, WANG J J, PAN M, NING W W, YAN L L, ZHENG J J, LI R F. Chinese J. Inorg. Chem. , 2018, 34(2): 300-308
       

    23. [23]

      Wang P F, Zha F, Yao L, Chang Y. Appl. Clay Sci. , 2018, 163: 249256

    24. [24]

      Huang Y X, Ma H F, Xu Z Q, Qian W X, Zhang H T, Ying W Y. Fuel, 2020, 273: 117771  doi: 10.1016/j.fuel.2020.117771

    25. [25]

      GUO Y Y, LIANG G H, ZHANG Y T, HE Z G, LIANG Y N, LI N, LI X F, DOU T. Chinese J. Inorg. Chem. , 2019, 35(2): 185-193
       

    26. [26]

      Zhong J W, Han J F, Wei Y X, Xu S T, Sun T T, Zeng S, Guo X W, Song C S, Liu Z M. Chinese J. Catal. , 2019, 40(4): 477-485  doi: 10.1016/S1872-2067(19)63281-X

    27. [27]

      ZHAO D P, ZHAO Q S, ZHANG Y, SHI T, YAO H G, YU J Q. Chem. J. Chinese Universities, 2016, 37(2): 342-348
       

    28. [28]

      Su J J, Zhou H B, Liu S, Wang C M, Jiao W Q, Wang Y D, Liu C, Ye Y C, Zhang L, Zhao Y, Liu H X, Wang D, Yang W M, Xie Z K, He M Y. Nat. Commun. , 2019, 10(1): 1297-1305  doi: 10.1038/s41467-019-09336-1

    29. [29]

      Zhang G C, Fan G L, Yang L, Li F. Appl. Catal. A, 2020, 605: 117805117817

    30. [30]

      Eskizeybek V, Avcı A, Chhowalla M. Cryst. Res. Technol. , 2011, 46(10): 1093-1100  doi: 10.1002/crat.201100221

    31. [31]

      Barad C, Kimmel G, Hayun H, Shamir D, Shandalov M, Shekel G, Gelbstein Y. J. Mater. Sci. , 2018, 53(18): 12741-12749  doi: 10.1007/s10853-018-2556-1

    32. [32]

      Zhao D P, Zhang Y, Peng Y H, Yu J Q. Catal. Lett. , 2016, 146(11): 2261-2267  doi: 10.1007/s10562-016-1854-y

    33. [33]

      Bai B, Guan W S, Li Z Y, Li Puma G. Mater. Res. Bull. , 2011, 46(1): 26-31  doi: 10.1016/j.materresbull.2010.10.002

    34. [34]

      Raveendra G, Li C M, Cheng Y, Meng F H, Li Z. New J. Chem. , 2018, 42(6): 4419-4431  doi: 10.1039/C7NJ04734G

    35. [35]

      Cheng K, Gu B, Liu X L, Kang J C, Zhang Q H, Wang Y. Angew. Chem. Int. Ed. , 2016, 55(15): 4725-4728  doi: 10.1002/anie.201601208

    36. [36]

      Chen J S, Thomas J M, Wright P A, Townsend R P. Catal. Lett. , 1994, 28(2): 241-248

    37. [37]

      King P D C, Veal T D, Schleife A, Zúñiga-Pérez J, Martel B, Jefferson P. H, Fuchs F, Muñoz Sanjosé V, Bechstedt F, Mcconville C F. Phys. Rev. B, 2009, 79(20): 205205-205211  doi: 10.1103/PhysRevB.79.205205

    38. [38]

      Liu X L, Zhou W, Yang Y D, Cheng K, Kang J C, Zhang L, Zhang G Q, Min X J, Zhang Q H, Wang Y. Chem. Sci. , 2018, 9(20): 4708-4718  doi: 10.1039/C8SC01597J

  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(15)
  • Abstract views(1334)
  • HTML views(319)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return