Citation: Lang-Lang YANG, Fan-Hui MENG, Peng ZHANG, Xiao-Tong LIANG, Zhong LI. Catalytic Performance for CO2 Hydrogenation to Light Olefins over ZrCdOx/SAPO-18 Bifunctional Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(3): 448-456. doi: 10.11862/CJIC.2021.067 shu

Catalytic Performance for CO2 Hydrogenation to Light Olefins over ZrCdOx/SAPO-18 Bifunctional Catalyst

Figures(7)

  • ZrCdOx metal oxides with various Zr/Cd atomic ratios (nZr/nCd) were prepared by parallel coprecipitation method, the sheet-like SAPO-18 zeolites with molar ratio of SiO2 to Al2O3 (nSiO2/nAl2O3) of 0.1 and 0.01 were hydrothermally synthesized. The metal oxide and SAPO-18 were physically mixed to prepare ZrCdOx/SAPO-18 bifunctional catalyst, and to study the catalytic performance for CO2 hydrogenation to light olefins. Transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed desorption of CO2 (CO2TPD), temperature programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the catalysts. Compared with the sole ZrO2, the introduction of CdO decreased the BET (Brunauer Emmett Teller) surface area of ZrCdOx. The Zr8Cd1 oxide prepared with nZr/nCd=8 exhibited the small amorphous particles, the strong synergetic effect between Zr and Cd led to the generation of more oxygen vacancies in ZrCdOxoxide, which was beneficial to the adsorption and activation of CO2. The effect of mass ratio of Zr8Cd1 oxide to SAPO-18 (nSiO2/nAl2O3=0.1), and the reaction temperature, pressure and space velocity on catalytic performance were investigated, and the optimal reaction conditions were obtained. Moreover, it is also found that when the ratio of nSiO2/nAl2O3 decreased from 0.1 to 0.01, the content of Brønsted acid reduced, the molar ratio of olefins to paraffin increased from 18.6 to 37.2; however, the content of by-product CO increased rapidly, and the space-time yield of light olefins decreased remarkably.
  • 加载中
    1. [1]

      Guo L S, Sun J, Ge Q J, Tsubaki N. J. Mater. Chem. A, 2018, 6(46): 23244-23262  doi: 10.1039/C8TA05377D

    2. [2]

      Ye R P, Ding J, Gong W B, Argyle M D, Zhong Q, Wang Y J, Russell C K, Xu Z H, Russell A G, Li Q H, Fan M H, Yao Y G. Nat. Commun. , 2019, 10(1): 5698-5713  doi: 10.1038/s41467-019-13638-9

    3. [3]

      Ma Z Q, Porosoff M D. ACS Catal. , 2019, 9(3): 2639-2656  doi: 10.1021/acscatal.8b05060

    4. [4]

      Ronda-Lloret M, Rothenberg G, Shiju N R. ChemSusChem, 2019, 12(17): 3896-3914  doi: 10.1002/cssc.201900915

    5. [5]

      Gao J J, Jia C, Liu B. Catal. Sci. Technol. , 2017, 7(23): 5602-5607  doi: 10.1039/C7CY01549F

    6. [6]

      Sedighi M, Mohammadi M. J. CO2 Util. , 2019, 35: 236-244

    7. [7]

      Tan L, Zhang P P, Cui Y, Suzuki Y, Li H J, Guo Li S, Yang G H, Tsubaki N. Fuel Process. Technol. , 2019, 196: 106174-106179  doi: 10.1016/j.fuproc.2019.106174

    8. [8]

      Hu S, Liu M, Ding F S, Song C S, Zhang G L, Guo X W. J. CO2 Util. , 2016, 15: 89-95  doi: 10.1016/j.jcou.2016.02.009

    9. [9]

      Numpilai T, Witoon T, Chanlek N, Limphirat W, Bonura G, Chareonpanich M, Limtrakul J. Appl. Catal. A, 2017, 547: 219-229  doi: 10.1016/j.apcata.2017.09.006

    10. [10]

      Liu X L, Wang M H, Zhou C, Zhou W, Cheng K, Kang J C, Zhang Q H, Deng W P, Wang Y. Chem. Commun. , 2018, 54(2): 140-143  doi: 10.1039/C7CC08642C

    11. [11]

      Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal. , 2017, 7(12): 8544-8548  doi: 10.1021/acscatal.7b03251

    12. [12]

      Liu X L, Wang M H, Yin H R, Hu J T, Cheng K, Kang J C, Zhang Q H, Wang Y. ACS Catal. , 2020, 10(15): 8303-8314  doi: 10.1021/acscatal.0c01579

    13. [13]

      Gao P, Dang S H, Li S G, Bu X N, Liu Z Y, Qiu M H, Yang C G, Wang H, Zhong L S, Han Y, Liu Q, Wei W, Sun Y H. ACS Catal. , 2018, 8(1): 571-578  doi: 10.1021/acscatal.7b02649

    14. [14]

      Dang S S, Li S G, Yang C G, Chen X Q, Li X P, Zhong L S, Gao P, Sun Y H. ChemSusChem, 2019, 12: 1-11  doi: 10.1002/cssc.201802948

    15. [15]

      LIU R, ZHA F, YANG A M, CHANG Y. Chem. J. Chinese Universities, 2016, 37(5): 964-971
       

    16. [16]

      Dang S S, Gao P, Liu Z Y, Chen X Q, Yang C G, Wang H, Zhong L S, Li S G, Sun Y H. J. Catal. , 2018, 364: 382-393  doi: 10.1016/j.jcat.2018.06.010

    17. [17]

      Wang J J, Tang C Z, Li G N, Han Z, Li Z L, Liu H L, Cheng F, Li C. ACS Catal. , 2019, 9(11): 10253-10259  doi: 10.1021/acscatal.9b03449

    18. [18]

      Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X H. Science, 2016, 351(6277): 1065-1068  doi: 10.1126/science.aaf1835

    19. [19]

      Zhang P, Meng F H, Li X J, Yang L L, Ma P C, Li Z. Catal. Sci. Technol. , 2019, 9(20): 5577-5581  doi: 10.1039/C9CY01348B

    20. [20]

      Sun Q M, Xie Z K, Yu J H. Natl. Sci. Rev. , 2018, 5(4): 542-558  doi: 10.1093/nsr/nwx103

    21. [21]

      LI J F, FAN W B, DONG M, HE Y, QIN Z F, WANG J G. Chem. J. Chinese Universities, 2011, 32(3): 765-771
       

    22. [22]

      CUI X Y, WANG J J, PAN M, NING W W, YAN L L, ZHENG J J, LI R F. Chinese J. Inorg. Chem. , 2018, 34(2): 300-308
       

    23. [23]

      Wang P F, Zha F, Yao L, Chang Y. Appl. Clay Sci. , 2018, 163: 249256

    24. [24]

      Huang Y X, Ma H F, Xu Z Q, Qian W X, Zhang H T, Ying W Y. Fuel, 2020, 273: 117771  doi: 10.1016/j.fuel.2020.117771

    25. [25]

      GUO Y Y, LIANG G H, ZHANG Y T, HE Z G, LIANG Y N, LI N, LI X F, DOU T. Chinese J. Inorg. Chem. , 2019, 35(2): 185-193
       

    26. [26]

      Zhong J W, Han J F, Wei Y X, Xu S T, Sun T T, Zeng S, Guo X W, Song C S, Liu Z M. Chinese J. Catal. , 2019, 40(4): 477-485  doi: 10.1016/S1872-2067(19)63281-X

    27. [27]

      ZHAO D P, ZHAO Q S, ZHANG Y, SHI T, YAO H G, YU J Q. Chem. J. Chinese Universities, 2016, 37(2): 342-348
       

    28. [28]

      Su J J, Zhou H B, Liu S, Wang C M, Jiao W Q, Wang Y D, Liu C, Ye Y C, Zhang L, Zhao Y, Liu H X, Wang D, Yang W M, Xie Z K, He M Y. Nat. Commun. , 2019, 10(1): 1297-1305  doi: 10.1038/s41467-019-09336-1

    29. [29]

      Zhang G C, Fan G L, Yang L, Li F. Appl. Catal. A, 2020, 605: 117805117817

    30. [30]

      Eskizeybek V, Avcı A, Chhowalla M. Cryst. Res. Technol. , 2011, 46(10): 1093-1100  doi: 10.1002/crat.201100221

    31. [31]

      Barad C, Kimmel G, Hayun H, Shamir D, Shandalov M, Shekel G, Gelbstein Y. J. Mater. Sci. , 2018, 53(18): 12741-12749  doi: 10.1007/s10853-018-2556-1

    32. [32]

      Zhao D P, Zhang Y, Peng Y H, Yu J Q. Catal. Lett. , 2016, 146(11): 2261-2267  doi: 10.1007/s10562-016-1854-y

    33. [33]

      Bai B, Guan W S, Li Z Y, Li Puma G. Mater. Res. Bull. , 2011, 46(1): 26-31  doi: 10.1016/j.materresbull.2010.10.002

    34. [34]

      Raveendra G, Li C M, Cheng Y, Meng F H, Li Z. New J. Chem. , 2018, 42(6): 4419-4431  doi: 10.1039/C7NJ04734G

    35. [35]

      Cheng K, Gu B, Liu X L, Kang J C, Zhang Q H, Wang Y. Angew. Chem. Int. Ed. , 2016, 55(15): 4725-4728  doi: 10.1002/anie.201601208

    36. [36]

      Chen J S, Thomas J M, Wright P A, Townsend R P. Catal. Lett. , 1994, 28(2): 241-248

    37. [37]

      King P D C, Veal T D, Schleife A, Zúñiga-Pérez J, Martel B, Jefferson P. H, Fuchs F, Muñoz Sanjosé V, Bechstedt F, Mcconville C F. Phys. Rev. B, 2009, 79(20): 205205-205211  doi: 10.1103/PhysRevB.79.205205

    38. [38]

      Liu X L, Zhou W, Yang Y D, Cheng K, Kang J C, Zhang L, Zhang G Q, Min X J, Zhang Q H, Wang Y. Chem. Sci. , 2018, 9(20): 4708-4718  doi: 10.1039/C8SC01597J

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    18. [18]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(15)
  • Abstract views(1413)
  • HTML views(333)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return