Citation:
Guo-Jun KANG, Ke LI, Xue-Feng REN, Hong-Qu TANG. Theoretical Study on Regulation of Aniline Moiety on Non-radiative Transition of a Kind of Pt(Ⅱ) Phosphorescent Materials[J]. Chinese Journal of Inorganic Chemistry,
;2021, 37(3): 569-576.
doi:
10.11862/CJIC.2021.065
-
A series of efficient red platinum based emitter with functionalized diphenylamine moiety (M1~M3) were designed and investigated by density functional theory (DFT) and time-dependent DFT (TD-DFT). The effect of different substituent positions on the electronic structures and optical properties were fully explored by compared with the synthesized complex. The introduction of diphenylamine moiety could effectively strengthen the π-conjugation interaction between the metal and ligand. By gradually increasing the amount of diphenylamine moiety, the intensities and the participation of metal-to-ligand charge-transfer (MLCT) for the absorption bands of M3 were enhanced, which are beneficial to collect light energy participation of metals and increase the spin-orbital coupling effect. M1~M3 exhibited red emission with the peak wavelengths at 602~630 nm. These emission spectra are mixtures of 3MLCT and ligand to ligand charge transfer (3LLCT) character. The possible non radiative process T1 (3MLCT) → TS → triplet metal-centered 3MC (d-d) state were deeply investigated, and the results show that the possibility of the non-radiative process will decrease because the surface crossing at a minimum energy crossing point (MECP) between T1 and S0 state is difficult to populate when the functionalized diphenylamine moiety is useful to enhance steric hindrance.
-
-
-
[1]
Kang J S, Zaen R, Park K M, Lee K H, Lee J Y, Kang J Y. Cryst. Growth Des. , 2020, 20(9): 6129-6138 doi: 10.1021/acs.cgd.0c00838
-
[2]
Yang X L, Guo H R, Liu B, Zhao J, Zhou G J, Wu Z X, Wong W Y. Adv. Sci. , 2018, 5: 1701067-170107 doi: 10.1002/advs.201701067
-
[3]
QIN M N, WANG L D, CHENG M L, LIU L, LIU Q, TANG X Y. Chinese J. Inorg. Chem. , 2020, 36(3): 529-535
-
[4]
WU Y L, DU X G, SUN J, LI J, WANG H, XU B S. Chinese J. Inorg. Chem. , 2014, 30(11): 2516-2522
-
[5]
Shafikov M Z, Daniels R, Pander P, Dias F B, Williams J A G, Kozhevnikov V N. ACS Appl. Mater. Interfaces, 2019, 11(8): 8182-8193 doi: 10.1021/acsami.8b18928
-
[6]
Li G J, Zhao X D, Fleetham T, Chen Q D, Zhan F, Zheng J B, Yang Y F, Lou W W, Yang Y N, Fang K, Shao Z Z, Zhang Q S, She Y B. Chem. Mater. , 2020, 32(1): 537-548 doi: 10.1021/acs.chemmater.9b04263
-
[7]
Liu B Q, Jabed M A, Guo J L, Xu W, Brown S L, Ugrinov A, Hobbie E K, Kilina S, Qin A J, Sun W F. Inorg. Chem. , 2019, 58(21): 1437714388
-
[8]
Fleetham T, Li G J, Li J. ACS Appl. Mater. Interfaces, 2015, 7(30): 16240-16246 doi: 10.1021/acsami.5b01596
-
[9]
Xu Y Y, Luo Y F, Li M, He R X, Shen W. J. Phys. Chem. A, 2016, 120(34): 6813-6821 doi: 10.1021/acs.jpca.6b03575
-
[10]
Liu Y Q, Gahungu G, Sun X B, Qu X C, Wu Z J. J. Phys. Chem. C, 2012, 116(50): 26496-26506 doi: 10.1021/jp3071019
-
[11]
Cui B B, Shao J Y, Zhong Y. Organometallics, 2014, 33(16): 42204229
-
[12]
Song C P, Tang J, Li J Q, Wang Z X, Li P, Zhang H Y. Inorg. Chem., 2018, 57: 12174-12186 doi: 10.1021/acs.inorgchem.8b01828
-
[13]
SHU X, ZHOU X, PAN Q J, LI M X, ZHANG H X, SUN J Z. Chinese J. Inorg. Chem. , 2008, 24(6): 971-976 doi: 10.3321/j.issn:1001-4861.2008.06.022
-
[14]
Kang G J, Cheng H Y, Li K, Ma J F, Ren X F. Chem. Phys. Lett. , 2020, 740: 137077-137083 doi: 10.1016/j.cplett.2019.137077
-
[15]
Gaussian 09, Revision A 01, Gaussian, Inc., Wallingford, CT, 2009.
-
[16]
Ernzerhof M, Scuseria G E. J. Chem. Phys. , 1999, 110: 5029-5036 doi: 10.1063/1.478401
-
[17]
Adamo C, Barone V. J. Chem. Phys. , 1999, 110: 6158-6170 doi: 10.1063/1.478522
-
[18]
Häussermann U, Dolg M, Stoll H, Preuss H, Schwerdtfeger P, Pitzer R M. Mol. Phys. , 1993, 78: 1211-1224 doi: 10.1080/00268979300100801
-
[19]
Kuechle W, Dolg M, Stoll H, Preuss H. J. Chem. Phys. , 1994, 100: 7535-7542 doi: 10.1063/1.466847
-
[20]
Harvey J N, Aschi M. Phys. Chem. Chem. Phys. , 1999, 1: 5555-5563 doi: 10.1039/a907723e
-
[21]
Harvey J N, Aschi M, Schwarz H, Koch W. Theor. Chem. Acc. , 1998, 99: 95-99 doi: 10.1007/s002140050309
-
[1]
-
-
-
[1]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[2]
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
-
[3]
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[7]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[8]
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
-
[9]
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
-
[10]
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
-
[11]
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
-
[12]
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
-
[13]
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
-
[14]
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
-
[15]
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
-
[16]
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
-
[17]
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
-
[18]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[19]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[20]
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(775)
- HTML views(148)