Citation: Yi-Jie ZHANG, Le-Ran LIU, Yun WU, Fei ZHAO, Guang LIU, Jin-Ping LI. Two-Step Electrodeposition Construction of NiFe/Ni3S2/NF Hierarchical Heterogeneous Electrode for Enhanced Oxygen Evolution Reaction at Large Current Densities[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(3): 499-508. doi: 10.11862/CJIC.2021.057 shu

Two-Step Electrodeposition Construction of NiFe/Ni3S2/NF Hierarchical Heterogeneous Electrode for Enhanced Oxygen Evolution Reaction at Large Current Densities

Figures(6)

  • A simple two step electrodeposition method was applied to effectively integrate the amorphous Ni3S2 material and the defect-rich NiFe bimetallic oxyhydroxide on the surface of the nickel foam, thereby constructing a NiFe/Ni3S2/NF three-dimensional hierarchical heterogeneous electrode. Benefiting from the structural and catalytic advantages of amorphous Ni3S2 and defect-rich NiFe materials, as well as the strong electronic interaction at the heterogeneous interface, the NiFe/Ni3S2/NF catalytic electrode exhibited excellent oxygen evolution performance: only an overpotential of 273 mV was needed to attain a current density of 100 mA·cm-2, which is far superior to most of the reported Ni/Fe-based composite materials. It can stably output a high current density of 1 000 mA·cm-2 at the overpotential of 372 mV for more than 27 h in 1 mol·L-1 KOH solution.
  • 加载中
    1. [1]

      Morales G C G, Stern L A, Hu X L. Chem. Soc. Rev. , 2014, 43(18): 6555-6569  doi: 10.1039/C3CS60468C

    2. [2]

      You B, Liu X, Hu G X, Gul S, Yano J, Jiang D, Sun Y J. J. Am. Chem. Soc. , 2017, 139(35): 12283-12290  doi: 10.1021/jacs.7b06434

    3. [3]

      Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998  doi: 10.1126/science.aad4998

    4. [4]

      Liu H X, Peng X Y, Liu X J, Qi G C, Luo J. ChemSusChem, 2019, 12(7): 1334-1341  doi: 10.1002/cssc.201802437

    5. [5]

      SHI H Y, LU T B. Chin. Sci. Bull. , 2014, 59(17): 1603-1616
       

    6. [6]

      Zou X, Liu Y P, Li G D, Wu Y Y, Li D P, Li W, Li H W, Wang D J, Zhang Y, Zou X X. Adv. Mater. , 2017, 29(22): 1700404  doi: 10.1002/adma.201700404

    7. [7]

      Niu S, Jiang W J, Tang T, Yuan L P, Luo H, Hu J S. Adv. Funct. Mater. , 2019, 29(36): 1902180-1902189  doi: 10.1002/adfm.201902180

    8. [8]

      Liu H X, Liu X J, Mao Z Y, Zhao Z, Peng X Y, Luo J, Sun X M. J. Power Sources, 2018, 400: 190-197  doi: 10.1016/j.jpowsour.2018.08.028

    9. [9]

      Janssen L J J, Stralen S J D. Van. Electrochim. Acta, 1981, 26(8): 10111022

    10. [10]

      LIU G, YAO R, ZHAO Y, WANG M H, LI N, LI J P. Chinese J. Inorg. Chem. , 2018, 34(8): 105-111
       

    11. [11]

      Zhou H Q, Yu F, Zhu Q, Sun J Y, Qin F, Yu L, Bao J M, Yu Y, Chen S, Ren Z F. Energy Environ. Sci. , 2018, 11(10): 2858-2864  doi: 10.1039/C8EE00927A

    12. [12]

      Zou Z X, Wang X Y, Huang J S, Wu Z C, Gao F. J. Mater. Chem. A, 2019, 7(5): 2233-2241  doi: 10.1039/C8TA11072G

    13. [13]

      Liu Y P, Liang X, Gu L, Zhang Y, Li G D, Zou X X, Chen J S. Nat. Commun. , 2018, 9(1): 2609-2619  doi: 10.1038/s41467-018-05019-5

    14. [14]

      Xu M, Wei M. Adv. Funct. Mater. , 2018, 28(47): 1802943  doi: 10.1002/adfm.201802943

    15. [15]

      Trotochaud L, Young S L, Ranney J K, Boettcher S W. J. Am. Chem. Soc. , 2014, 136(18): 6744-6753  doi: 10.1021/ja502379c

    16. [16]

      Stevens M B, Enman L J, Korkus E H, Zaffran J, Trang C D M, Asbury J, Kast M G, Toroker M C, Boettcher S W. Nano Res. , 2019, 12(9): 2288-2295  doi: 10.1007/s12274-019-2391-y

    17. [17]

      LI C, TIAN P, PANG H C, YE J W, NING G L. Chinese J. Inorg. Chem. , 2020, 35(8): 1492-1498
       

    18. [18]

      Wang J Y, Teng X, Niu Y L, Guo L X, Kong J F, He X M, Chen Z F. RSC Adv. , 2019, 9(38): 21679-21684  doi: 10.1039/C9RA04368C

    19. [19]

      Che Q J, Li Q, Chen X H, Tan Y, Xu X. Appl. Catal. B, 2020, 263: 118338-118351  doi: 10.1016/j.apcatb.2019.118338

    20. [20]

      Zhou J Q, Yu L, Zhu Q C, Huang C Q, Yu Y. J. Mater. Chem. A, 2019, 7(30): 18118-18125  doi: 10.1039/C9TA06347A

    21. [21]

      Han L, Dong S J, Wang E K. J. Cheminf. , 2016, 47(51): 9266-9291

    22. [22]

      Liu X J, Xi W, Li C, Li X B, Shi J, Shen Y L, He J, Zhang L H, Xie L, Sun X M, Wang P, Luo J, Liu L M, Ding Y. Nano Energy, 2018, 44: 371-377  doi: 10.1016/j.nanoen.2017.12.016

    23. [23]

      Zhang T, Hang L F, Sun Y Q, Men D D, Li X Y, Wen L L, Lyu X J, Li Y. Nanoscale Horiz. , 2019, 4(5): 1132-1138  doi: 10.1039/C9NH00177H

    24. [24]

      Li Y, Guo S W, Jin T, Wang Y L, Cheng F Y, Jiao L F. Nano Energy, 2019, 63: 103821-103830  doi: 10.1016/j.nanoen.2019.06.017

    25. [25]

      Sun H C, Li J G, Lv L, Li Z S, Ao X, Xu C H, Xue X Y, Hong G, Wang C D. J. Power Sources, 2019, 425(15): 138-146

    26. [26]

      SUN Z Y, CAO S, HUANG X Q, FAN X M, YANG Z H, ZHANG W X. Chinese J. Inorg. Chem. , 2020, 35(10): 1899-1905  doi: 10.11862/CJIC.2020.188
       

    27. [27]

      Xu J S, Sun Y D, Lu M J, Wang L, Zhang J, Liu X Y. Sci. China Mater. , 2018, 62(5): 699-710

    28. [28]

      Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. J. Am. Chem. Soc. , 2015, 137(44): 14023-14026  doi: 10.1021/jacs.5b08186

    29. [29]

      Che Q J, Li Q, Tan Y, Chen X H, Xu X, Chen Y S. Appl. Catal. B, 2019, 246: 337-348  doi: 10.1016/j.apcatb.2019.01.082

    30. [30]

      ZHAO S F, LIU P, LI W P, ZENG X H, ZHONG Y H, YU L, ZENG H Q. CIESC Journal, 2020, 71(4): 1836-1843
       

    31. [31]

      Liang Z, Zhou P, Wang Z Y, Wang P, Liu Y Y, Qin X Y, Zhang X Y, Dai Y, Zheng Z K, Huang B B. Int. J. Hydrogen Energy, 2020, 45(15): 8659-8666  doi: 10.1016/j.ijhydene.2020.01.113

    32. [32]

      Wei Y, Shin C H, Tetteh E B, Lee B J, Yu J S. ACS Appl. Energy Mater. , 2019, 3(1): 822-830

    33. [33]

      Wang M H, Wu Y, Li N, Zhao F, Zhao Q, Li J P, Liu G. Chem. Asian J. , 2020, 15(9): 1484-1492  doi: 10.1002/asia.202000213

    34. [34]

      Xu J, Zhang C X, Liu H X, Sun J Q, Xie R C, Qiu Y, Lü F, Liu Y F, Zhuo L C, Liu X J, Luo J. Nano Energy, 2020, 70: 104529

    35. [35]

      Qiu Z, Ma Y, Edvinsson T. Nano Energy, 2019, 66: 104118  doi: 10.1016/j.nanoen.2019.104118

    36. [36]

      Yao M Q, Sun B L, He L X, Wang N, Hu W C, Komarneni S. ACS Sustainable Chem. Eng. , 2019, 7(5): 5430-5439  doi: 10.1021/acssuschemeng.8b06525

    37. [37]

      Chemelewski W D, Lee H C, Lin J F, Bard A J, Mullins C B. J. Am. Chem. Soc. , 2014, 136(7): 2843-2850  doi: 10.1021/ja411835a

    38. [38]

      Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. Angew. Chem. Int. Ed. , 2016, 55(11): 3694-3698  doi: 10.1002/anie.201511447

    39. [39]

      Louie M W, Bell A T. J. Am. Chem. Soc. , 2013, 135(33): 12329-12337  doi: 10.1021/ja405351s

    40. [40]

      Luo X, Ji P X, Wang P Y, Cheng R L, Chen D, Lin C, Zhang J N, He J W, Shi Z H, Li N, Xiao S Q, Mu S C. Adv. Energy Mater. , 2020, 10(17): 1903891-1903902  doi: 10.1002/aenm.201903891

    41. [41]

      Lv L, Chang Y X, Ao X, Li Z S, Li J G, Wu Y, Xue X Y, Cao Y L, Hong G, Wang C D. Mater. Today Energy, 2020, 17: 100462  doi: 10.1016/j.mtener.2020.100462

    42. [42]

      Feng J X, Ye S H, Xu H, Tong Y X, Li G R. Adv. Mater. , 2016, 28(23): 4698-4703  doi: 10.1002/adma.201600054

    43. [43]

      Hou J G, Wu Y Z, Cao S Y, Sun Y Q, Sun L C. Small, 2017, 13(46): 1702018  doi: 10.1002/smll.201702018

    44. [44]

      Bao J, Zhang X D, Fan B, Zhang J J, Zhou M, Yang W L, Hu X, Wang H, Pan B C, Xie Y. Angew. Chem. Int. Ed. , 2015, 54(25): 7399-7404  doi: 10.1002/anie.201502226

    45. [45]

      Yan Z H, Sun H M, Chen X, Liu H H, Zhao Y R, Li H X, Xie W, Cheng F Y, Chen J. Nat. Commun. , 2018, 9(1): 2373-2382  doi: 10.1038/s41467-018-04788-3

    46. [46]

      Wang Y Q, Li Y M, Ding L P, Chen Z, Ong A, Lu W H, Herng T S, Li X W, Ding J. J. Mater. Chem. A, 2019, 7(32): 18816-18822  doi: 10.1039/C9TA04478G

    47. [47]

      Chou S W, Lin J Y. J. Electrochem. Soc. , 2013, 160(4): D178-D182  doi: 10.1149/2.078304jes

    48. [48]

      Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C. Chem. Soc. Rev. , 2020, 49(7): 2196-2214  doi: 10.1039/C9CS00607A

    49. [49]

      Fang M, Han D, Xu W B, Shen Y, Lu Y M, Cao P J, Han S, Xu W Y, Zhu D L, Liu W J, Ho J C. Adv. Energy Mater. , 2020, 10(27): 2001059  doi: 10.1002/aenm.202001059

    50. [50]

      Zhang G, Feng Y S, Lu W T, He D, Wang C Y, Li Y K, Wang X Y, Cao F F. ACS Catal. , 2018, 8(6): 5431-5441  doi: 10.1021/acscatal.8b00413

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(45)
  • Abstract views(1690)
  • HTML views(481)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return