Citation: Xin-Gang WANG, Kai LIU, Hui ZHU, Chong-Yu LI, Lei-Lei LIN, Feng GUO, Hong-Liang DAI. MoSe2/Ag3PO4 Composites: Preparation and Photocatalytic Properties for Degradation of Rhodamine B under Visible Light[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 327-339. doi: 10.11862/CJIC.2021.038 shu

MoSe2/Ag3PO4 Composites: Preparation and Photocatalytic Properties for Degradation of Rhodamine B under Visible Light

Figures(13)

  • The as-prepared MoSe2/Ag3PO4 by in-situ deposition showed favorable photocatalytic activity and stability. Heterostructure of MoSe2/Ag3PO4 had efficient separation of photogenerated electron-hole pairs that led to the elevated photocatalytic activity. The transfer of photogenerated electrons from the surface of Ag3PO4 to MoSe2 reduced the possibility of Ag+ to metallic Ag. When the mass ratio of MoSe2 and Ag3PO4 was 1:5 (champion combination), the obtained MoSe2/Ag3PO4 could reach to 98% for RhB degradation under visible light irradiation within 30 min. In addition, MoSe2/Ag3PO4 still achieved 89% of the degradation under visible light irradiation after four regenerations. Eventually, the photocatalytic degradation of RhB by MoSe2/Ag3PO4 was revealed by liquid chromatography/mass spectrometry (LC/MS).
  • 加载中
    1. [1]

      Fujishima A, Honda K. Nature, 1972, 238:37-38  doi: 10.1038/238037a0

    2. [2]

      Harir M, Gaspar A, Kanawati B, Fekete A, Frommberger M, Martens D, Kettrup A, El Azzouzi M, Schmitt-Kopplin P. Appl. Catal. B, 2008, 84:524-532  doi: 10.1016/j.apcatb.2008.05.010

    3. [3]

      YANG C F, TENG W, SONG Y H, CUI Y J. Chin. J. Chem., 2018, 39:1615-1624

    4. [4]

      Montoya J F, Velásquez J A, Salvador P. Appl. Catal. B, 2009, 88:50-58  doi: 10.1016/j.apcatb.2008.09.035

    5. [5]

      Lin Y X, Ferronato C, Deng N S, Chovelon J M. Appl. Catal. B, 2011, 104:353-360  doi: 10.1016/j.apcatb.2011.03.006

    6. [6]

      Wang H J, Chen X Y. J. Hazard. Mater., 2011, 186:1888-1892  doi: 10.1016/j.jhazmat.2010.12.088

    7. [7]

      Vaiano V, Iervolino G. J. Colloid Interface Sci., 2018, 518:192-199  doi: 10.1016/j.jcis.2018.02.033

    8. [8]

      Baia L, Orbán E, Fodor S, Hampel B, Kedves E Z, Saszet K, Szekely I, Karacsonyi E, Reti B, Berki P, Vulpoi A, Magyari K, Csavdari A, Bolla C, Cosoveanu V, Hernadi K, Baia M, Dombi A, Danciu V, Kovacs G, Pap Z. Mater. Sci. Semicond. Process, 2015, 42:66-71

    9. [9]

      Kalikeri S, Kamath N, Gadgil D J. Environ. Sci. Pollut. Res., 2017, 25:3731-3744

    10. [10]

      Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S. Nat. Mater., 2010, 9:559-564  doi: 10.1038/nmat2780

    11. [11]

      Wang H, Bai Y S, Yang J T, Lang X F, Li J H, Lin G. Chem. Eur. J., 2012, 18:5524-5529  doi: 10.1002/chem.201103189

    12. [12]

      Ge M, Zhu N, Zhao Y P, Li J, Liu L. Ind. Eng. Chem. Res., 2012, 51:5167-5173  doi: 10.1021/ie202864n

    13. [13]

      Wang K, Hua X, Xu J. J. Mol. Catal. A:Chem., 2014, 393:302-308  doi: 10.1016/j.molcata.2014.06.026

    14. [14]

      Bian L L, Liu Y J, Zhu G X, Yan C, Zhang J H, Yuan A H. Ceram. Int., 2018, 44:7580-7587  doi: 10.1016/j.ceramint.2018.01.172

    15. [15]

      Yang J H, Yao H X, Liu Y Q, Zhang Y J. Nanoscale Res. Lett., 2008, 3:481-485  doi: 10.1007/s11671-008-9183-8

    16. [16]

      Voiry D, Yamaguchi H, Li J W, Silva R, Alves D C B, Fujita T S, Chen M W, Asefa T, Shenoy V B, Eda G. Nat. Mater., 2013, 12:850-855  doi: 10.1038/nmat3700

    17. [17]

      Li X, He X Y, Shi C M, Liu B, Zhang Y Y, Wu S Q, Zhu Z Z, Zhao J B. ChemSusChem, 2014, 7:3328-3333  doi: 10.1002/cssc.201402862

    18. [18]

      Teng W, Tan X J, Li X Y, Tang Y B. Appl. Surf. Sci., 2017, 409:250-260

    19. [19]

      Li Y, Xiao X Y, Ye Z H. Appl. Surf. Sci., 2019, 468:902-911

    20. [20]

      Liu R D, Li H, Duan L B, Shen H, Zhang Q, Zhao X R. Appl. Surf. Sci., 2018, 462:263-269  doi: 10.1016/j.apsusc.2018.07.173

    21. [21]

      Wang W W, Wang L, Li W B, Feng C, Qiu R, Xu L K, Cheng X D, Shao G Q. Mater. Lett., 2019, 234:183-186  doi: 10.1016/j.matlet.2018.09.098

    22. [22]

      Song H J, You S S, Jia X H. Appl. Phys. A:Mater. Sci. Process., 2015, 121:541-548

    23. [23]

      Shi W L, Guo F, Li M Y, Shi Y, Shi M J, Yan C. Appl. Surf. Sci., 2019, 473:928-933  doi: 10.1016/j.apsusc.2018.12.247

    24. [24]

      Qi S Y, Liu X H, Zhao B C. 2014 International Conference on Computer Science and Electronic Technology. Guilin:Atlantis Press, China, 2015:136-139

    25. [25]

      Shaw J C, Zhou H L, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X F. Nano. Res., 2014, 7:511-517

    26. [26]

      Bougouma M, Batan A, Guel B, Segato T, Legma J B, Reniers F, Ogletree M P D, Herman C B Doneux T. J. Cryst. Growth, 2013, 363:122-127

    27. [27]

      Helmly B C, Lynch W E, Nivens D A. Spectrosc. Lett., 2007, 40:483-492

    28. [28]

      Zhang X H, Xue H X, Wang J T. Nano-Micro Lett., 2015, 10:339-342

    29. [29]

      Kou S F, Guo X, Xu X F, Yang J. Catal. Commun., 2018, 106:60-63

    30. [30]

      Liu R D, Li H, Duan L B, Shen H, Zhang Q, Zhao X R. Appl. Surf. Sci., 2018, 462:263-269

    31. [31]

      Yan J, Song Z L, Wang X, Xu Y G, Pu W J, Xu H, Yuan S Q, Li H M. Appl. Surf. Sci., 2019, 466:70-77

    32. [32]

      Shi Y, Tang Y B, Chen F Y, Shi W L, Guo F, Wang X G. Desalin. Water Treat., 2019, 170:287-296

    33. [33]

      Song Y H, Zhao H Z, Chen Z G, Wang W R, Huang L Y, Xu H, Li H M. Phys. Status Solidi A, 2016, 213:2356-2363

    34. [34]

      Kim Y G, Jo W K. J. Hazard. Mater., 2019, 361:64-72

    35. [35]

      Tang Y B, Yang H J, Chen F Y, Wang X G. Desalin. Water Treat., 2018, 110:144-153

    36. [36]

      Guo F, Li M Y, Ren H Q, Huang X L, Wang C, Shi W L, Lu C Y. Appl. Surf. Sci., 2019, 491:88-94

    37. [37]

      Dinh C T, Nguyen T D, Kleitz F, Do T O. Chem. Commun., 2011, 47:7797-7799

    38. [38]

      Rasheed T, Bilal M, Iqbal H M N, Shah S Z H, Hu H B, Zhang X H, Zhou Y F. Environ. Technol., 2018, 39:1533-1543

    39. [39]

      Zhang L, He Y M, Wu Y, Wu T H. Mater. Sci. Eng. B, 2011, 176:1497-1504

    40. [40]

      Martínez-de la Cru A, GarcíaPérez U M. Mater. Res. Bull., 2010, 45:135-141

    41. [41]

      Shi W L, Li M Y, Huang Q L, Ren H J, Guo F, Tang Y B, Lu C Y. Chem. Eng. J., 2020, 394:125009

    42. [42]

      Guo F, Huang Q L, Chen Z H, Sun H R, Shi W L. Sep. Purif. Technol., 2020, 253:117518

    43. [43]

      Guo F, Sun H R, Cheng L, Shi W L. New J. Chem., 2020, 44:11215-11223

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    5. [5]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    13. [13]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    14. [14]

      Shukun LePeng WangYuhao LiuMutao XuQuansheng LiuQijie JinJie MiaoChengzhang ZhuHaitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087

    15. [15]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    16. [16]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    17. [17]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    18. [18]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    19. [19]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(13)
  • Abstract views(1043)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return