Citation: Xiao-Li GAO, Mei-Rong HAN, Hui-Fang REN, Si-Si FENG. Synthesis, Structures, Luminescence and Photocatalytic Properties of Three Lanthanide Complexes Based on Ditoluoyl-Tartrate[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 375-384. doi: 10.11862/CJIC.2021.033 shu

Synthesis, Structures, Luminescence and Photocatalytic Properties of Three Lanthanide Complexes Based on Ditoluoyl-Tartrate

  • Corresponding author: Si-Si FENG, ssfeng@sxu.edu.cn
  • Received Date: 24 July 2020
    Revised Date: 28 October 2020

Figures(8)

  • Three one-dimensional (1D) lanthanide complexes[Ln(HDTTA)3(CH3OH)3]n (Ln=Ce (1), Pr (2), Sm (3)) (D-H2DTTA=(+)-di(p-toluoyl)-D-tartaric acid) were synthesized at room temperature and normal pressure. They were fully structurally characterized by IR, elemental analysis, single-crystal and powder X-ray diffraction. The structure analysis shows that complexes 1~3 are isomorphic. They belong to chiral R3 space group of trigonal system and display infinite 1D chains structure along c axis. Photoluminescence measurements indicated that D-H2DTTA ligand can partly sensitize the f-f transition luminescence of Pr3+ and Sm3+ cations but Ce3+ at 609 nm, which is attributed to the mismatching between the excited state energy levels of metal cations and ligands. Additionally, Complex 1 exhibited photocatalytic property for the degradation of methylene blue under UV light irradiation in the solution. The photocatalytic performance was up to 76% within 160 min without any other reagents. CCDC: 2017862, 1; 2017863, 2; 2017864, 3.
  • 加载中
    1. [1]

      Wang K M, Du L, Ma Y L, Zhao J S, Wang Q, Yan T, Zhao Q H. CrystEngComm, 2016, 18:2690-2700  doi: 10.1039/C5CE02367J

    2. [2]

      Wei N, Zhang M Y, Zhang X N, Li G M, Zhang X D, Han Z B. Cryst. Growth Des., 2014, 14:3002-3009  doi: 10.1021/cg500286v

    3. [3]

      JI Q, CHEN L Z. Chinese J. Inorg. Chem. 2017, 33(7):874-880
       

    4. [4]

      Xu X Y, Lian X, Hao J N, Zhang C, Yan B. Adv. Mater., 2017, 29:1702298  doi: 10.1002/adma.201702298

    5. [5]

      Gao Q, Wang X Q, Jacobson A J. Inorg. Chem., 2011, 50:9073-9082  doi: 10.1021/ic201274c

    6. [6]

      Zhang J, Chen S M, Zingiryan A, Bu X H. J. Am. Chem. Soc., 2008, 130:17246-17247  doi: 10.1021/ja8075692

    7. [7]

      Lautrette G, Kauffmann B, Ferrand Y, Aube C, Chandramouli N, Dubreuil D, Huc I. Angew. Chem. Int. Ed., 2013, 52:11517-11520  doi: 10.1002/anie.201305364

    8. [8]

      Casanovas B, Zinna F, Bari L D, Fallah M S E, Font-Bardia M, Vicente R. Dalton Trans., 2017, 46:6349-6357  doi: 10.1039/C6DT04686J

    9. [9]

      Staszak K, Wieszczycka K, Marturano V, Tylkowski B. Coord. Chem. Rev., 2019, 397:76-90  doi: 10.1016/j.ccr.2019.06.017

    10. [10]

      Dai L X, Jones C M, Chan W T K, Pham T A, Ling X X, Gale E M, Rotile N J, Tai W C S, Anderson C J, Caravan P, Law G L. Nat. Commun., 2018, 9:857  doi: 10.1038/s41467-018-03315-8

    11. [11]

      Butler S J, Delbianco M, Lamarque L, McMahon B K, Neil E R, Pal R, Parker D, Walton J W, Zwier J M. Dalton Trans., 2015, 44:4791-4803

    12. [12]

      Ma C C, Yang Z Q, Wang W, Zhang M T, Hao X P, Zhu S D, Chen S G. J. Mater. Chem. C, 2020, 8:2888-2898  doi: 10.1039/C9TC05891E

    13. [13]

      Banerjee S, Benjwal P, Singh M, Kar K K. Appl. Surf. Sci., 2018, 439:560-568  doi: 10.1016/j.apsusc.2018.01.085

    14. [14]

      Feng C, Chen Z Y, Jing J P, Hou J. J. Mater. Chem. C, 2020, 8:3000-3009  doi: 10.1039/C9TC05010H

    15. [15]

      Boruah P K, Borthakur P, Darabdhara G, Kamaja C K, Karbhal I, Shelke M V, Phukan P, Saikia D, Das M R. RSC Adv., 2016, 6:11049-11063  doi: 10.1039/C5RA25035H

    16. [16]

      LIU T B, PENG Y F. Chinese J. Inorg. Chem., 2020, 36(7):1327-1332
       

    17. [17]

      Feng C, Sun J W, Yan P F, Li Y X, Liu T Q, Sun Q Y, Li G M. Dalton Trans., 2015, 44:4640-4647  doi: 10.1039/C4DT03457K

    18. [18]

      Sun J W, Li S J, Yan P F, Yao X, Li G M. CrystEngComm, 2016, 18:3079-3085  doi: 10.1039/C6CE00182C

    19. [19]

      Niu W Y, Feng C, Fan N Y, Wang X Y, Yan P F, Sun J W, Li G M. Synth. Met., 2016, 221:319-325  doi: 10.1016/j.synthmet.2016.09.008

    20. [20]

      Niu W Y, Yan P F, Fan Z T, Fan N Y, Sun J W, Li G M. Sci. Adv. Mater., 2016, 8(12):2189-2196  doi: 10.1166/sam.2016.3004

    21. [21]

      Niu W Y, Sun J W, Yan P F, Li Y X, An G H, Li G M. Chem. Asian J., 2016, 11:555-560

    22. [22]

      Han M R, Zhang H T, Wang J N, Feng S S, Lu L P. RSC Adv., 2019, 9:32288-32295
       

    23. [23]

      Han M R, Li S D, Ma L, Yao B, Feng S S, Zhu M L. Acta Crystallogr. Sect. C, 2019, C75:1220-1227

    24. [24]

      Sheldrick G M. Acta Crystallogr. Sect. A, 2008, A64:112-122

    25. [25]

      Sheldrick G M. Acta Crystallogr. Sect. C, 2015, C71:3-8
       

    26. [26]

      Zhao N, Sun F X, He H M, Jia J T, Zhu G S. Cryst. Growth Des., 2014, 14:1738-1743

    27. [27]

      Su F, Lu L P, Feng S S, Zhu M L. CrystEngComm, 2014, 34:7990-7999

    28. [28]

      Ma X L, Wang Z X, He X, Shao M, Li M X. Inorg. Chem. Commun., 2018, 92:131-135

    29. [29]

      Li L N, Wang S Y, Chen T L, Sun Z H, Luo J H, Hong M C. Cryst. Growth Des., 2012, 12:4109-4115
       

    30. [30]

      Zhou M J, Li B, Liu L, Feng Y L, Guo J Z. CrystEngComm, 2014, 16:10034-10039

    31. [31]

      Liu C H, Zhang L J, Bai F Y, Wang Y, Hong Y Z, Li C R, Xing Y H. J. Inorg. Organomet. Polym., 2018, 28:1839-1849

    32. [32]

      Chen Y S, Zhao L F, Chen Y G. Inorg. Nano-Met. Chem., 2017, 47:24-30

    33. [33]

      Turner M J, McKinnon J J, Wolff S K. CrystalExplorer Ver. 17.5, University of Western Australia, 2017.

    34. [34]

      Pan M, Du B B, Zhu Y X, Yue M Q, Wei Z W, Su C Y. Chem. Eur. J., 2016, 22:2440-2451
       

    35. [35]

      Zhang Y J, Wang K, Zhuang G L, Xie Z Q, Zhang C, Cao F, Pan G X, Chen H F, Zou B, Ma Y G. Chem. Eur. J., 2015, 21:2474-2479

    36. [36]

      Moore E G, Samuel A P S, Raymond K N. Acc. Chem. Res., 2009, 42(4):542-552
       

    37. [37]

      An Y Y, Lu L P, Feng S S, Zhu M L. CrystEngComm, 2018, 20:2043-2052

    38. [38]

      Zhang L Y, Lu L P, Zhu M L, Feng S S. CrystEngComm, 2017, 19:1953-1964

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    4. [4]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    19. [19]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(8)
  • Abstract views(1027)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return