Citation: Xin-Lin CHEN, Zhi-Ping ZHU, Bao-Xin WU, Shu-Guang CHEN, Pan ZHOU, Hao HE. Design and Synthesis of Sandwich-like Co9S8/NiTe/Ni Composites for High-Performance Supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 295-304. doi: 10.11862/CJIC.2021.031 shu

Design and Synthesis of Sandwich-like Co9S8/NiTe/Ni Composites for High-Performance Supercapacitors

  • Corresponding author: Zhi-Ping ZHU, zzp8389@163.com
  • Received Date: 11 September 2020
    Revised Date: 3 December 2020

Figures(9)

  • The NiTe/Ni electrode was obtained in the mixed solvent of ethanolamine and KOH. Subsequently, the Co9S8/NiTe/Ni composite electrode with a sandwich-like structure was fabricated after the hydrothermal treatment in the aqueous solution of Co(NO3)2 and thiourea. The electrode not only exhibited an ultra-high specific capacity of 1 890 F·g-1 at a current density of 2 A·g-1, but also exhibited excellent cyclic stabilities at high current densities.
  • 加载中
    1. [1]

      Kumar V, Park S, Parida K, Parida K, Bhavanasi V, Lee P S. Mater. Today Energy, 2017, 4:41-57  doi: 10.1016/j.mtener.2017.03.004

    2. [2]

      Sekhar S C, Nagaraju G, Yu J S. Nano Energy, 2018, 48:81-92  doi: 10.1016/j.nanoen.2018.03.037

    3. [3]

      Armand M, Tarascon J M. Nature, 2008, 451(7179):652-657  doi: 10.1038/451652a

    4. [4]

      Simon P, Gogotsi Y. Nat. Mater., 2008, 7(11):845-854  doi: 10.1038/nmat2297

    5. [5]

      Gao M R, Xu Y F, Jiang J, Yu S H. Chem. Soc. Rev., 2013, 42:2986-3017

    6. [6]

      Lee Y W, Kim B S, Hong J, Choi H, Jang H S, Hou B, Pak S, Lee J, Lee S H, Morris S M, Whang D, Hong J P, Shin H S, Cha S N, Sohn J I, Kim J M. Nano Energy, 2017, 37:15-23  doi: 10.1016/j.nanoen.2017.05.006

    7. [7]

      Huo H H, Zhao Y Q, Xu C L. J. Mater. Chem. A, 2014, 2(36):15111-15117

    8. [8]

      Sun M, Tie J J, Cheng G, Lin T, Peng S M, Deng F Z, Ye F, Yu L. J. Mater. Chem. A, 2015, 3(4):1730-1736  doi: 10.1039/C4TA04833D

    9. [9]

      Chen D D, Yang L J, Li J F, Wu Q S. ChemistrySelect, 2019, 4(5):1586-1595  doi: 10.1002/slct.201803413

    10. [10]

      Liu T, Zhang L Y, You W, Yu J G. Small, 2018, 14(12):1702407  doi: 10.1002/smll.201702407

    11. [11]

      Chen S G, Wu B X, Qian H, Wu Z X, Liu P, Li F J, He H, Wu J H, Liu B. J. Power Sources, 2019, 438:227000  doi: 10.1016/j.jpowsour.2019.227000

    12. [12]

      Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. Adv. Energy Mater., 2019, 9(36):1901081

    13. [13]

      Xu T H, Li G Y, Zhao L J. Chem. Eng. J., 2018, 336:602-611

    14. [14]

      Jia H N, Wang Z Y, Zheng X H, Lin J H, Liang H Y, Cai Y F, Qi J L, Cao J, Feng J C, Fei W D. Chem. Eng. J., 2018, 351:348-355

    15. [15]

      Ke Q Q, Guan C, Zhang X, Zheng M R, Zhang Y W, Cai Y Q, Zhang H, Wang J. Adv. Mater., 2017, 29(5):1604164

    16. [16]

      Liu Y, Huang M H, Lu M, Guan X H, Guan X, Wang G S, Jia B. Chem. Eng. J., 2019, 364:462-474

    17. [17]

      Jia H N, Wang Z Y, Zheng X H, Lin J H, Liang H Y Guan X H, Guan X, Wang G S, Jia B, Cai Y F, Qi J L, Cao J, Feng J C, Fei W D. Chem. Eng. J., 2018, 351:348-355

    18. [18]

      Wen Y X, Liu Y P, Dang S, Tian S H, Li H Q, Wang Z L, He D Y, Wu Z S, Cao G Z, Peng S L. J. Power Sources, 2019, 423:106-114

    19. [19]

      Sun S X, Luo J H, Qian Y, Jin Y, Liu Y, Qiu Y G, Li Y, Fang C, Han J T, Huang Y H. Adv. Energy Mater., 2018, 8(25):1801080

    20. [20]

      Xu R, Lin J M, Wu J H, Huang M L, Fan L Q, Chen H W, He X, Wang Y T, Xu Z D. Appl. Surf. Sci., 2018, 434:861-870

    21. [21]

      Duan B, Gao X, Yao X, Fang Y, Huang L, Zhou J, Zhang L. Nano Energy, 2016, 27:482-491

    22. [22]

      Wu B X, Qian H, Nie Z W, Luo Z P, Wu Z X, Liu P, He H, Wu J H, Chen S G, Zhang F F. J. Energy. Chem., 2020, 46:178-186

    23. [23]

      Li Z H, Li X, Xiang L, Xie X, Li X, Xiao D R, Shen J, Lu W Q, Lu L, Liu S Y. J. Mater. Chem. A, 2016, 4(47):18335-18341

    24. [24]

      Chen S G, Li Y H, Wu B X, Wu Z X, Li F J, Wu J H, Liu P, Liu P, Li H B. Electrochim. Acta, 2018, 275:40-49

    25. [25]

      Ye B R, Huang M L, Jiang S, Fan L Q, Lin J M, Wu J H. Mater. Chem. Phys., 2018, 211:389-398

    26. [26]

      Harish S, Nirmalesh-Naveen A, Abinaya R, Archana J, Ramesh R, Navaneethan M, Shimomura M, Hayakawa Y. Electrochim. Acta, 2018, 283:1053-1062

    27. [27]

      Hou B H, Wang Y Y, Guo J Z, Zhang Y, Ning Q L, Yang Y, Li W H, Zhang J P, Wang X L, Wu X L. ACS Appl. Mater. Interfaces, 2018, 10(4):3581-3589

    28. [28]

      Wang H Y, Liang M M, Duan D, Shi W Y, Song Y Y, Sun Z B. Chem. Eng. J., 2018, 350:523-533

    29. [29]

      Zhang Y, Yu L, Hu R D, Zhang J L, Wang Y N, Niu R C, Qian X Y, Zhu J W. J. Mater. Chem. A, 2018, 6(36):17417-17425

    30. [30]

      Zhang J L, Du C F, Dai Z F, Chen W, Zheng Y, Li B, Zong Y, Wang X, Zhu J W, Yan Q Y. ACS Nano, 2017, 11(10):10599-10607

    31. [31]

      Liu Y, Zhao D P, Liu H Q, Umar A, Wu X. Chin. Chem. Lett., 2019, 30(5):1105-1110

    32. [32]

      Yao D, Ouyang Y, Jiao X Y, Ye H T, Lei W, Xia X F, Lu L, Hao Q L. Ind. Eng. Chem. Res., 2018, 57(18):6246-6256

    33. [33]

      Wu B X, Zhang F F, Nie Z W, Qian H, Liu P, He H, Wu J H, Chen Z Y, Chen S G. Electrochim. Acta, 2021, 365:137325

  • 加载中
    1. [1]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    10. [10]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    14. [14]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    18. [18]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

Metrics
  • PDF Downloads(4)
  • Abstract views(2854)
  • HTML views(589)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return