Citation: Li ZHANG, Chang JIANG, Lin-Feng GUO, Xiao-Ling ZHANG, Xiong-Qiang LIN, Jie KANG, Wei-Ming SUN. Synthesis, Characterization, Antitumor Activity, and Theoretical Calculations of Co(Ⅱ) Complex Based on Pyridine-2, 6-dicarboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 368-374. doi: 10.11862/CJIC.2021.027 shu

Synthesis, Characterization, Antitumor Activity, and Theoretical Calculations of Co(Ⅱ) Complex Based on Pyridine-2, 6-dicarboxylic Acid

Figures(4)

  • A new cobalt complex, namely[Co(Hpdc)(bpy)Cl]·C2H5OH (bpy=2, 2'-bipyridine), was synthesized by using pyridine-2, 6-dicarboxylic acid (H2pdc) as ligand under hydrothermal condition, and followed by experimental characterization of infrared spectroscopy and X-ray single-crystal diffraction. To deeply reveal the electronic structure of this complex, density functional theory calculations were employed to investigate its charge distribution, electrostatic potential, frontier molecular orbitals, and relevant electronic properties under aqueous condition. Moreover, the antitumor activity of this complex was evaluated by thiazolyl blue tetrazolium bromide (MTT) assay in chronic myelocytic leukemia (K562) and esophageal carcinoma (OE-19) cancer cell lines, and the resulting IC50 values were estimated to be as low as (0.22±0.05) μg·mL-1 and (0.82±0.16) μg·mL-1 (i. e., (0.48±0.11) μmol·L-1 and (1.77±0.35) μmol·L-1) for K562 and OE-19, respectively, demonstrating its cytotoxic activity against these two cancer cell lines. CCDC: 1994088.
  • 加载中
    1. [1]

      Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D M, Forman D, Bray F. Int. J. Cancer, 2015, 136(5):E359-E386  doi: 10.1002/ijc.29210

    2. [2]

      Thun M J, DeLancey J O, Center M M, Jemal A, Ward E M. Carcinogenesis, 2009, 31(1):100-110

    3. [3]

      Tomasetti C, Li L, Vogelstein B. Science, 2017, 355(6331):1330-1334  doi: 10.1126/science.aaf9011

    4. [4]

      Livingston D M, Silver D P. Nature, 2008, 451(7182):1066-1067  doi: 10.1038/4511066a

    5. [5]

      Rosenberg B, Vancamp L, Krigas T. Nature, 1965, 205(4972):698-699  doi: 10.1038/205698a0

    6. [6]

      Rosenberg B, Vancamp L, Trosko J E, Mansour V H. Nature, 1969, 222(5191):385-386  doi: 10.1038/222385a0

    7. [7]

      Hurley, Laurence H. Nat. Rev. Cancer, 2002, 2(3):188-200  doi: 10.1038/nrc749

    8. [8]

      Hartinger C G, Dyson P J. Chem. Soc. Rev., 2009, 38(2):391-401  doi: 10.1039/B707077M

    9. [9]

      Thota S, Rodrigues D A, Crans D C, Barreiro E J. J. Med. Chem., 2018, 61(14):5805-5821  doi: 10.1021/acs.jmedchem.7b01689

    10. [10]

      Bakalova A, Varbanov H, Buyukliev R, Momekov G, Ferdinandov D, Konstantinov S, Ivanov D. Eur. J. Med. Chem., 2008, 43(5):958-965  doi: 10.1016/j.ejmech.2007.06.025

    11. [11]

      Galanski M, Arion V B, Jakupec M A, Keppler B K. Curr. Pharm. Des., 2003, 9(25):2078-2089  doi: 10.2174/1381612033454180

    12. [12]

      Tanaka T, Yukawa K, Umesaki N. Oncol. Rep., 2005, 14(5):1365-1369

    13. [13]

      Rabik C A, Dolan M E. Cancer Treat. Rev., 2007, 33(1):9-23  doi: 10.1016/j.ctrv.2006.09.006

    14. [14]

      Ohmichi M, Hayakawa J, Tasaka K, Kurachi H, Murata Y. Trends Pharmacol. Sci., 2005, 26(3):113-116  doi: 10.1016/j.tips.2005.01.002

    15. [15]

      Galanski M. Recent Patents Anti-Canc. Drug Discov., 2006, 1(2):285-295  doi: 10.2174/157489206777442287

    16. [16]

      Shaili E. Sci. Prog., 2014, 97(1):20-40  doi: 10.3184/003685014X13904811808460

    17. [17]

      CHEN Z F, MA Y D, HUA L G, ZHANG J. Chinese J. Inorg. Chem., 2014, 30(7):1525-1534
       

    18. [18]

      Pires B M, Giacomin L C, Castro F A V, Amanda D S C, Pereira M D, Bortoluzzi A J, Faria R B, Scarpellini M. J. Inorg. Biochem., 2016, 157:104-113  doi: 10.1016/j.jinorgbio.2016.01.024

    19. [19]

      XIE Q F, GUO M L, CHEN Y M. Chinese J. Inorg. Chem., 2018, 34(2):309-316
       

    20. [20]

      Li J, Zhang J, Zhang Q, Wang Y, Bai Z, Zhao Q, He D, Wang Z, Zhang J, Chen Y. Bioorg. Med. Chem., 2019, 27(20):115071  doi: 10.1016/j.bmc.2019.115071

    21. [21]

      Khan H Y, Ansari M O, Shadab G G H A, Tabassum S, Arjmand F. Bioorg. Chem., 2019, 88(2019):102963

    22. [22]

      Chuasaard T, Panyarat K, Rodlamul P, Chainok K, Yimklan S, Rujiwatra A. Cryst. Growth Des., 2017, 17(3):1045-1054  doi: 10.1021/acs.cgd.6b01389

    23. [23]

      Xu J, Su W, Hong M. Cryst. Growth Des., 2011, 11(1):337-346  doi: 10.1021/cg101343k

    24. [24]

      Ghosh S K, Ribas J, Bharadwaj P K. CrystEngComm, 2004, 6(45):250-256  doi: 10.1039/B407571D

    25. [25]

      Bordbar M, Tabatabaee M, Alizadeh-Nouqi M, Mehri-Lighvan Z, Khavasi H R, YeganehFaal A, Fallahian F, Dolati M. J. Iran. Chem. Soc., 2016, 13(6):1125-1132  doi: 10.1007/s13738-016-0826-x

    26. [26]

      Ghosh S K, Bharadwaj P K. Inorg. Chem., 2004, 43(7):2293-2298  doi: 10.1021/ic034982v

    27. [27]

      Ghosh S K, Bharadwaj P K. Inorg. Chem., 2005, 44(9):3156-3161  doi: 10.1021/ic048159q

    28. [28]

      Derikvand Z, Dorosti N, Hassanzadeh F, Shokrollahi A, Mohammadpour Z, Azadbakht A. Polyhedron, 2012, 43(1):140-152  doi: 10.1016/j.poly.2012.06.026

    29. [29]

      Deng D, Liu P, Fu W, Li L, Yang F, Ji B. Inorg. Chim. Acta, 2010, 363(5):891-898  doi: 10.1016/j.ica.2009.12.044

    30. [30]

      CrystalClear 1.40, Rigaku Americas Corp, The Woodlands, TX, 2008.

    31. [31]

      Sheldrick G M. SHELXL-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.

    32. [32]

      Sheldrick G M. SHELXL-2018/1, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 2018.

    33. [33]

      Hutama A S, Huang H, Kurniawan Y S. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2019, 221:117152

    34. [34]

      Parr R G, Donnelly R A, Levy M, Palke W E. J. Chem. Phys., 1978, 68(8):3801-3807  doi: 10.1063/1.436185

    35. [35]

      Parr R G, Szentpaly L V, Liu S. J. Am. Chem. Soc., 1999, 121(9):1922-1924

    36. [36]

      Cohen A J, Mori-Sánchez P, Yang W. Science, 2008, 321(5890):792-794
       

    37. [37]

      Mori-Sanchez P, Cohen A J, Yang W. J. Chem. Phys., 2006, 125(20):2604-308

    38. [38]

      Lu C, Kuang X Y, Lu Z W, Mao A J, Ma Y M. J. Phys. Chem. A, 2011, 115(33):9273-9281
       

    39. [39]

      Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Rega N, Gao J, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JrJA, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, 2016.

    40. [40]

      Scalmani G, Frisch M J. J. Chem. Phys., 2010, 132(11):114110

    41. [41]

      Dennington R, Keith T, Millam J. GaussView, Ver. 6, KS, USA: Semichem Inc, Shawnee Mission, 2016.

    42. [42]

      Lu T, Chen F J. Comput. Chem., 2012, 33(5):580-592

    43. [43]

      Humphrey W, Dalke A, Schulten K. J. Mol. Graphics, 1996, 14(1):33-38

    44. [44]

      Stamatatos T C, Pringouri K V, Raptopoulou C P, Vicente R, Psycharis V, Escuer A, Perlepes S P. Inorg. Chem. Commun., 2006, 9(12):1178-1182

    45. [45]

      Marques L F, Marinho M V, Speziali N L, Visentin L D C, Machado F C. Inorg. Chim. Acta, 2011, 365(1):454-457
       

    46. [46]

      Ghasemi K, Rezvani A R, Shokrollahi A, Moghimi A, Gavahi S, García-Granda S, Mendoza-Meroño R. C. R. Chim., 2014, 17(12):1221-1229

    47. [47]

      Gao H. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2011, 79(3):687-693

    48. [48]

      Štarha P, Marek J, Trávníček Z. Polyhedron, 2012, 33(1):404-409

    49. [49]

      Krstic N M, Matic I Z, Juranic Z D, Novakovic I T, Sladic D M. J. Steroid. Biochem. Mol. Biol., 2014, 143:365-375

    50. [50]

      Ohe Y, Nakagawa K, Fujiwara Y, Sasaki Y, Minato K, Bungo M. Cancer Res., 1989, 49(15):4098-4102

    51. [51]

      Han Q B, Li R T, Zhang J X, Sun H D. Helv. Chim. Acta, 2004, 87(5):1119-1124
       

    52. [52]

      Su W C, Chang S L, Chen T Y, Chen J S, Tsao C J. Jpn. J. Clin. Oncol., 2000, 30(12):562-567

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    8. [8]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    9. [9]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    18. [18]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    19. [19]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    20. [20]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

Metrics
  • PDF Downloads(5)
  • Abstract views(778)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return