Citation: Zhou-Rong XIAO, Fang HOU, Xiang-Wen ZHANG, Li WANG, Guo-Zhu LI. Preparation of Ordered Mesoporous Nitrogen Doped Carbon Supported Fe2O3 for Oxygen Reduction Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 243-250. doi: 10.11862/CJIC.2021.024 shu

Preparation of Ordered Mesoporous Nitrogen Doped Carbon Supported Fe2O3 for Oxygen Reduction Reaction

  • Corresponding author: Guo-Zhu LI, gzli@tju.edu.cn
  • Received Date: 30 July 2020
    Revised Date: 27 October 2020

Figures(11)

  • Ordered mesoporous nitrogen doped carbon supported iron oxide was prepared, which effectively reduced the overpotential of oxygen reduction. The physicochemical properties of the as-prepared catalysts were characterized by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption test, powder X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the activity and selectivity for oxygen reduction reaction was tested by rotating disc electrode under alkaline conditions. The results show that iron was loaded in ordered mesoporous nitrogen doped carbon in the form of Fe2O3 after nitrogen pyrolysis, and its specific surface area reached 755 cm2·g-1. The results of Raman and X-ray photoelectron spectroscopy show that the graphitization degree of the catalyst increased with adding iron precursor. The impedance was decreased and its conductivity was increased. Under alkaline conditions, Fe2O3@NC exhibited a 4-electron oxygen reduction reaction, and its initial potential (-0.01 V vs Ag/AgCl) and half slope potential (-0.13 V vs Ag/AgCl) were comparable to those of commercial 20% Pt/C. In addition, the catalyst had superior methanol resistance and excellent constant voltage stability compared with commercial Pt/C. The discharge power of Fe2O3@NC reached 88 mW·cm-2, which was 1.29 times that of commercial Pt/C.
  • 加载中
    1. [1]

      Peng X W, Zhang L, Chen Z X, Zhong L X, Zhao D K, Chi X, Zhao X X, Li L G, Lu X H, Leng K, Liu C B, Liu W, Tang W, Loh K P. Adv Mater., 2019, 31:1900341-1900347

    2. [2]

      Gewirth A A, Varnell J A, DiAscro A M. Chem. Rev., 2018, 118:2313-2339  doi: 10.1021/acs.chemrev.7b00335

    3. [3]

      Zhu C Z, Li H, Fu S F, Du D, Lin Y H. Chem. Soc. Rev., 2016, 45:517-531  doi: 10.1039/C5CS00670H

    4. [4]

      Gao W B, Zhang Z P, Dou M L, Wang F. ACS Catal., 2019, 9:3278-3288

    5. [5]

      Xiao Z R, Hou F, Li Y T, Zhang R R, Shen G Q, Wang L, Zhang X W, Wang Q F, Li G Z. Chem. Eng. Sci., 2019, 207:235-246

    6. [6]

      Liu S, Li G Z, Gao Y Y, Xiao Z R, Zhang J F, Wang Q F, Zhang X W, Wang L. Catal. Sci. Technol., 2017, 7:4007-4016

    7. [7]

      Hu E L, Yu X Y, Chen F, Wu Y D, Hu Y, Lou X W. Adv. Energy Mater., 2018, 8:1702476-1702483

    8. [8]

      Zang Y P, Zhang H M, Zhang X, Liu R R, Liu S W, Wang G Z, Zhang Y X, Zhao H J. Nano Res., 2016, 9:2123-2137

    9. [9]

      Tian Y H, Xu L, Qian J C, Bao J, Yan C, Li H N, Li H M, Zhang S Q. Carbon, 2019, 146:763-771

    10. [10]

      Gao Y Y, Wang L, Li G Z, Xiao Z R, Wang Q F, Zhang X W. Int. J. Hydrogen Energy, 2018, 43:7893-7902

    11. [11]

      Xiao Z R, Hou F, Zhang R R, Li Y T, Yuan G, Pan L, Zou J J, Wang L, Zhang X W, Li G Z. Catal. Sci. Technol., 2019, 9:4581-4587

    12. [12]

      Gao S Y, Fan B F, Feng R, Ye C L, Wei X J, Liu J, Bu X H. Nano Energy, 2017, 40:462-470
       

    13. [13]

      Wang H T, Wang W, Gui M X, Muhammad A, Wang Z Y, Yu Y, Xiao J W, Liu H F. ACS Appl. Mater. Interfaces, 2017, 9:335-344

    14. [14]

      Wang H T, Wang W, Xu Y Y, Dong S, Xiao J W, Wang F, Liu H F, Xia B Y. ACS Appl. Mater. Interfaces, 2017, 9(12):10610-10617  doi: 10.1021/acsami.6b15392

    15. [15]

      He J N, Li B B, Mao J, Liang Y Q, Yang X J, Cui Z D, Zhu S L, Li Z Y. J. Mater. Sci., 2017, 52:10938-10947

    16. [16]

      Dhavale V, Singh S, Nadeema A, Gaikwad S, Kurungot S. Nanoscale, 2015, 7:20117-20125  doi: 10.1039/C7NR90179H

    17. [17]

      Li B, Chen Y, Ge X M, Chai J W, Zhang X, Andy Hor T S, Du G J, Liu Z L, Zhang H, Zong Y. Nanoscale, 2016, 8:5067-5075

    18. [18]

      Guo D K, Han S C, Wang J C, Zhu Y F. Appl. Surf. Sci., 2018, 434:1266-1273

    19. [19]

      Ao X, Zhang W, Li Z S, Li J G, Soule L, Huang X, Chiang W H, Chen H M, Wang C D, Liu M L, Zeng X C. ACS Nano, 2019, 13(10):11853-11862

    20. [20]

      Li Y Q, Huang H Y, Chen S R, Yu X, Wang C, Ma T L. Nano Res., 2019, 12(8):1900-1905

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(5)
  • Abstract views(1347)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return