Citation: Guo-Qiang LIU. Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoBx/Co3O4 Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 267-275. doi: 10.11862/CJIC.2021.022 shu

Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoBx/Co3O4 Catalyst

  • Corresponding author: Guo-Qiang LIU, gqliu@issp.ac.cn
  • Received Date: 21 August 2020
    Revised Date: 19 November 2020

Figures(6)

  • Herein, the room temperature treatment of Co3O4 nanorods via NaBH4 aqueous solution results in situ generation of amorphous CoBx nanosheets on nanorods (CoBx/Co3O4) electrocatalyst with abundant oxygen vacancies. The X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscope (XPS) were applied to investigate the crystal structures, morphologies, element distribution, and chemical states of the prepared electrocatalysts. The activity, stability, and electrochemical impedance spectroscopy (EIS) were recorded by an electrochemical workstation. The amorphous CoBx and oxygen vacancies were formed on surface of Co3O4 nanorods as active sites after treatment via NaBH4. The CoBx/Co3O4 showed excellent performance for oxygen evolution reaction (OER) with lower overpotential of 298 mV than that of Co3O4 (346 mV) to achieve a current density of 10 mA·cm-2 in 1.0 mol·L-1 KOH.
  • 加载中
    1. [1]

      ZHAO Z M, DING J W, DUAN H Y, PANG H. Chinese J. Inorg. Chem., 2020, 36(6):1079-1084
       

    2. [2]

      ZHOU Q, DUAN D D, FENG J W. Chinese J. Inorg. Chem., 2019, 35(12):2301-2310  doi: 10.11862/CJIC.2019.258
       

    3. [3]

      Dou S, Wang X, Wang S Y. Small Methods, 2019, 3(1):1800211  doi: 10.1002/smtd.201800211

    4. [4]

      Lv L, Li Z S, Xue K H, Ruan Y J, Ao X, Wan H Z, Miao X S, Zhang B S, Jiang J J, Wang C D, Ostrikov K. Nano Energy, 2018, 47:275-284  doi: 10.1016/j.nanoen.2018.03.010

    5. [5]

      Wei C, Sun S N, Mandler D, Wang X, Qiao S Z, Xu Z C. Chem. Soc. Rev., 2019, 48:2518-2534  doi: 10.1039/C8CS00848E

    6. [6]

      Wang B, Tang C, Wang H F, Chen X, Cao R, Zhang Q. Adv. Mater., 2019, 31(4):1805658  doi: 10.1002/adma.201805658

    7. [7]

      Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddard W A, Chen S, Ren Z F. Nat. Commun., 2018, 9:2551  doi: 10.1038/s41467-018-04746-z

    8. [8]

      Chen P Z, Tong Y, Wu C Z, Xie Y. Acc. Chem. Res., 2018, 51(11):2857-2866  doi: 10.1021/acs.accounts.8b00266

    9. [9]

      Wang C M, Bai S, Xiong Y J. Chinese J. Catal., 2015, 36:1476-1493  doi: 10.1016/S1872-2067(15)60911-1

    10. [10]

      Shan J Q, Zheng Y, Shi B Y, Davey K, Qiao S Z. ACS Energy Lett., 2019, 4(11):2719-2730  doi: 10.1021/acsenergylett.9b01758

    11. [11]

      Kang Q, Cao J Y, Zhang Y J, Liu L Q, Xu H, Ye J H. J. Mater. Chem. A, 2013, 1:5766-5774  doi: 10.1039/c3ta10689f

    12. [12]

      Tang Y Q, Shen H M, Cheng J Q, Liang Z B, Qu C, Tabassum H, Zou R Q. Adv. Funct. Mater., 2020, 30(11):1908223  doi: 10.1002/adfm.201908223

    13. [13]

      Yu X X, Yu Z Y, Zhang X L, Li P, Sun B, Gao X C, Yan K, Liu H, Duan Y, Gao M R, Wang G X, Yu S H. Nano Energy, 2020, 71:104652  doi: 10.1016/j.nanoen.2020.104652

    14. [14]

      He D P, Zhang L B, He D S, Zhou G, Lin Y, Deng Z X, Hong X, Wu Y E, Chen C, Li Y D. Nat. Commun., 2016, 7:12362  doi: 10.1038/ncomms12362

    15. [15]

      Pei Y, Zhou G B, Luan N, Zong B N, Qiao M H, Tao F. Chem. Soc. Rev., 2012, 41:8140-8162

    16. [16]

      Xu N, Cao G X, Chen Z J, Kang Q, Dai H B, Wang P. J. Mater. Chem. A, 2017, 5:12379-12384  doi: 10.1039/C7TA02644G

    17. [17]

      Nsanzimana J M V, Peng Y C, Xu Y Y, Thia L, Wang C, Xia B Y, Wang X. Adv. Energy Mater., 2017, 8(1):1701475

    18. [18]

      Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z Y, Somsen C, Muhler M, Schuhmann W. Adv. Energy Mater., 2016, 6(6):1502313  doi: 10.1002/aenm.201502313

    19. [19]

      Hao W J, Wu R B, Zhang R Q, Ha Y, Chen Z L, Wang L C, Yang Y J, Ma X H, Sun D L, Fang F, Guo Y H. Adv. Energy Mater., 2018, 8(26):1801372  doi: 10.1002/aenm.201801372

    20. [20]

      Guo Y N, Tang J, Wang Z L, Kang Y M, Bando Y, Yamauchi Y. Nano Energy, 2018, 47:494-502  doi: 10.1016/j.nanoen.2018.03.012

    21. [21]

      Hai G T, Jia X L, Zhang K Y, Liu X, Wu Z Y, Wang G. Nano Energy, 2018, 44:345-352  doi: 10.1016/j.nanoen.2017.11.071

    22. [22]

      Yang Y S, Zhuang L Z, Rufford T E, Wang S B, Zhu Z H. RSC Adv., 2017, 7:32923-32930  doi: 10.1039/C7RA02558K

    23. [23]

      Li T T, Zhu C X, Yang X G, Gao Y H, He W W, Yue H W, Zhao X G. Electrochim. Acta, 2017, 246:226-233  doi: 10.1016/j.electacta.2017.06.054

    24. [24]

      Lu Y Z, Jing Wang J, Zeng S Q, Zhou L J, Xu W, Zheng D Z, Liu J, Zeng Y X, Lu X H. J. Mater. Chem. A, 2019, 7:21678-21683  doi: 10.1039/C9TA08625K

    25. [25]

      Zhang L, Liang Q M, Yang P, Huang Y, Chen W J, Deng X M, Yang H H, Yan J H, Liu Y N. Int. J. Hydrogen Energy, 2019, 44:24209-24217  doi: 10.1016/j.ijhydene.2019.07.146

    26. [26]

      Guo Y, Chen S, Li Y, Wang Y W, Zou H B, Tong X L. Chem. Commun., 2020, 56:4448-4451  doi: 10.1039/D0CC01228A

    27. [27]

      Gao S, Jiao X C, Sun Z T, Zhang W H, Sun Y F, Wang C M, Hu Q T, Zu X L, Yang F, Yang S Y, Liang L, Wu J, Xie Y. Angew. Chem. Int. Ed., 2016, 128(2):708-712  doi: 10.1002/ange.201509800

    28. [28]

      Liu G Q, Sun Z T, Zhang X, Wang H J, Wang G Z, Wu X J, Zhang H M, Zhao H J. J. Mater. Chem. A, 2018, 6:19201-19209  doi: 10.1039/C8TA07162D

    29. [29]

      Fernandes R, Patel N, Miotello A, Filippi M. J. Mol. Catal. A:Chem., 2009, 298:1-6  doi: 10.1016/j.molcata.2008.09.014

    30. [30]

      Zhou W J, Lu J, Zhou K, Yang L J, Ke Y T, Tang Z H, Chen S W. Nano Energy, 2016, 28:143-150  doi: 10.1016/j.nanoen.2016.08.040

    31. [31]

      Zhou H Q, Yu F, Sun J Y, He R, Chen S, Chu C W, Ren Z F. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(22):5607-5611  doi: 10.1073/pnas.1701562114

    32. [32]

      Cai Z, Bi Y M, Hu E Y, Liu W, Dwarica N, Tian Y, Li X L, Kuang Y, Li Y P, Yang X Q, Wang H L, Sun X M. Adv. Energy Mater., 2017, 8(3):1701694

    33. [33]

      Wang Y C, Zhou T, Jiang K, Da P M, Peng Z, Tang J, Kong B, Cai W B, Yang Z Q, Zheng G F. Adv. Energy Mater., 2014, 4(16):1400696  doi: 10.1002/aenm.201470082

    34. [34]

      Gregoratti L, Baraldi A, Dhanak V R, Comelli C, Kiskinova M, Rosei R. Surf. Sci., 1995, 340:205-214  doi: 10.1016/0039-6028(95)00695-8

    35. [35]

      Mi Y Y, Qiu Y, Liu Y F, Peng X Y, Hu M, Zhao S Z, Cao H Q, Zhuo L Z, Li H Y, Ren J Q, Liu X J, Luo J. Adv. Funct. Mater., 2020, 30(31):2003438  doi: 10.1002/adfm.202003438

    36. [36]

      Zhang C X, Liu H X, He J, Hu G Z, Bao H F, Lv F, Zhuo L C, Ren J Q, Liu X J, Luo J. Chem. Commun., 2019, 55:10511-10514  doi: 10.1039/C9CC04481G

    37. [37]

      Yan L T, Cao L, Dai P C, Gu X, Liu D D, Li L J, Wang Y, Zhao X B. Adv. Funct. Mater., 2017, 27(40):1703455

    38. [38]

      Gupta S, Jadhav H, Sinha S, Miotello A, Patel M K, Sarkar A, Patel N. ACS Sustainable Chem. Eng., 2019, 7(19):16651-16658

    39. [39]

      Wu J D, Wang D P, Wan S A, Liu H L, Wang C, Wang X. Small, 2020, 16(15):1900550

    40. [40]

      Jin H Y, Mao S J, Zhan G P, Xu F, Bao X B, Wang Y. J. Mater. Chem. A, 2017, 5:1078-1084  doi: 10.1039/C6TA09959A

    41. [41]

      Chi K, Tian X, Wang Q J, Zhang Z Y, Zhang X Y, Zhang Y, Jing F, Lv Q Y, Yao W, Xiao F, Wang S. J. Catal., 2020, 381:44-52

    42. [42]

      Hao S Y, Chen L C, Yu C L, Yang B, Li Z J, Hou Y, Lei L C, Zhang X W. ACS Energy Lett., 2019, 4(4):952-959

    43. [43]

      Zhou G Y, Li M, Li Y L, Dong H, Sun D M, Liu X E, Xu L, Tian Z Q, Tang Y W. Adv. Funct. Mater., 2020, 30(7):1905252

    44. [44]

      Chen Z J, Kang Q, Cao G X, Xu N, Dai H B, Wang P. Int. J. Hydrogen, Energy, 2018, 43:6076-6087

    45. [45]

      Liu G Q, Zhang X, Zhao C J, Xiong Q Z, Gong W B, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. New J. Chem., 2018, 42:6381-6388

    46. [46]

      Zhang J. Li X X, Liu Y T, Zeng Z W, Cheng X, Wang Y D, Tu W M, Pan M. Nanoscale, 2018, 10:11997-12002

    47. [47]

      Liu G Q, Zhao C J, Wang G Z, Zhang Y X, Zhang H M. J. Colloid Interface Sci., 2018, 532:37-46

    48. [48]

      Han X P, Wu X Y, Deng Y D, Liu J, Lu J, Zhong C, Hu W B. Adv. Energy Mater., 2018, 8(24):1800935

    49. [49]

      Xiong S L, Yuan C Z, Zhang X G, Xi B J, Qian Y T. Chem. Eur. J., 2009, 15(21):5320-5326  doi: 10.1002/chem.200802671

    50. [50]

      Navale S T, Liu C, Gaikar P S, Patil V B, Sagar R U R, Du B, Mane R S, Stadler F J. Sensor. Actuat. B, 2017, 245:524-532  doi: 10.1016/j.snb.2016.07.136

    51. [51]

      Chernysheva D, Vlaic C, Leontyev I, Pudova L, Ivanov S, Avramenko M, Allix M, Rakhmatullin A, Maslova O, Bund A, Smirnova N. Solid State Sci., 2018, 86:3-59  doi: 10.1016/j.solidstatesciences.2018.10.005

    52. [52]

      Xu J, Zhang C X, Liu H X, Sun J Q, Xie R C, Qiu Y, Lv Fang, Liu Y F, Zhuo L C, Liu X J, Luo J. Nano Energy, 2020, 70:104529-104536

    53. [53]

      Duan Y, Yu Z U, Hu S J, Zheng X S, Zhang C T, Ding H H, Hu B C, Fu Q Q, Yu Z L, Zheng X, Zhu J F, Gao M R, Yu S H. Angew. Chem. Int. Ed., 2019, 131(44):15919-15924

    54. [54]

      Jiang N, You B, Boonstra R, Rodriguez I M T, Sun Y J. ACS Energy Lett., 2016, 1(2):386-390  doi: 10.1021/acsenergylett.6b00214

    55. [55]

      Jiang N, You B, Sheng M L, Sun Y J. Angew. Chem. Int. Ed., 2015, 127(21):6349-6352  doi: 10.1002/ange.201501616

    56. [56]

      Xu L, Jiang Q Q, Xiao Z H, Li X Y, Huo J, Wang S Y, Dai L M. Angew. Chem. Int. Ed., 2016, 128(17):5363-5367  doi: 10.1002/anie.201600687

    57. [57]

      Xu W J, Lyu F L, Bai Y C, Gao A Q, Feng J, Cai Z X, Yin Y D. Nano Energy, 2018, 43:110-116

    58. [58]

      Nsanzimana J M V, Gong L Q, Dangol R, Reddu V, Jose V, Xia B Y, Yan Q Y, Lee J M, Wang X. Adv. Energy Mater., 2019, 9(28):1901503  doi: 10.1002/aenm.201901503

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    6. [6]

      Chenxi ShangBoxuan LuChongbei WuShuqing ZhouLuyan ShiTayirjan Taylor IsimjanXiulin Yang . Inducing electronic rearrangement through Co3B-Mo2B5 catalysts: Efficient dual-function catalysis for NaBH4 hydrolysis and 4-nitrophenol reduction. Chinese Chemical Letters, 2025, 36(9): 111152-. doi: 10.1016/j.cclet.2025.111152

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(14)
  • Abstract views(3538)
  • HTML views(774)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return