Inhibition of Functions for C-Terminal Domain of Euplotes Octocarinatus Centrin by Chlorpromazine Hydrochloride
- Corresponding author: YANG Bin-Sheng, yangbs@sxu.edu.cn
Citation:
DONG Qian, YE Xu-Wen, YANG Jing, WANG Wen-Ming, ZHAO Ya-Qin, YANG Bin-Sheng. Inhibition of Functions for C-Terminal Domain of Euplotes Octocarinatus Centrin by Chlorpromazine Hydrochloride[J]. Chinese Journal of Inorganic Chemistry,
;2021, 37(1): 23-32.
doi:
10.11862/CJIC.2021.019
Salisbury J L, Baron A, Surek B, Melkonian M. J. Cell Biol., 1984, 99(3):962-970
doi: 10.1083/jcb.99.3.962
Baum P, Furlong C, Byers B. Proc. Natl. Acad. Sci. U.S.A., 1986, 83(15):5512-5516
doi: 10.1073/pnas.83.15.5512
Wolfrum U. Biol. Cell, 1992, 76(3):373-381
doi: 10.1016/0248-4900(92)90441-3
Zhu J K, Bressan R A, Hasegawa P M. Plant Physiol., 1992, 99(4):1734-1735
Salisbury J L. Curr. Opin. Cell Biol., 1995, 7(1):39-45
Radu L, Durussel I, Assairi L, Blouquit Y, Miron S, Cox J A, Craescu C T. Biochemistry, 2010, 49(20):4383-4394
doi: 10.1021/bi901764m
Duan L, Zhao Y Q, Wang Z J, Li G T, Liang A H, Yang B S. J. Inorg. Biochem., 2008, 102(2):268-277
Zhao Y Q, Song L, Liang A H, Yang B S. J. Photochem. Photobiol. B, 2009, 95(1):26-32
Zhao Y Q, Feng J Y, Wang Z J, Liang A H, Yang B S. Spectrochim. Acta A, 2008, 70(4):884-887
doi: 10.1016/j.saa.2007.10.003
Zhang W L, Shi E X, Zhao Y Q, Yang B S. J. Inorg. Biochem., 2018, 180:15-25
doi: 10.1016/j.jinorgbio.2017.12.001
Bhattacharyya M, Chaudhuri U, Poddar R K. Biochem. Biophys. Res. Commun., 1990, 167(3):1146-1153
Lee I S, Park T J, Sun B C, Kim Y S, Rhee I J, Kim K T. Biochem. Pharm., 1999, 6(58):1017-1024
YE X W, ZHANG W L, WANG Z J, ZHAO Y Q, YANG B S. Chem. J. Chinese Universities, 2019, 40(11):2257-2264
ZHANG W L, XU C H, YANG B S. Chinese J. Inorg. Chem., 2014, 30(1):106-112
Song Y X, Song Z, Yang B S. Chem. Res. Chin. Univ., 2019, 35(1), 53-59
Shi E X, Zhang W L, Zhao Y Q, Yang B S. Metallomics, 2017, 9:1796-1808
Zhao Y Q, Yan J, Song L, Feng Y N, Liang A H, Yang B S. Spectrochim. Acta Part A, 2012, 87:163-170
Zhao Y Q, Guo X J, Yang B S. RSC Adv., 2017, 7(17):10206-10214
Zhao Y Q, Yang J, Chao J B, Yang B S. Int. J. Biol. Macromol., 2019, 136:503-511
Duan L, Liu W, Wang Z J, Liang A H, Yang B S. J. Biol. Inorg. Chem., 2010, 15(7):995-1007
Song Z, Wang J L, Yang B S. Spectrochim. Acta Part A, 2014, 118(2):454-460
Ross P D, Subramanian S. Biochemistry, 1981, 20(11):3096-3102
Ishtikhar M, Khan S, Badr G, Mohamed A O, Khan R H. Mol. Biosys-tems, 2014, 10(11):2954-2964
Li M, Zhang W L, Yang B S. J. Inorg. Biochem., 2019, 193:15-24
Wang Z J, Zhao Y Q, Ren L X, Li G T, Liang A H, Yang B S. J. Photochem. Photobiol. A, 2007, 186(2/3):178-186
LIU W, DUAN L, ZHAO Y Q, Liang A H, Yang B S. Chin. Sci. Bull., 2010, 55(27):3118-3122
Rong Z J, Zhao Y Q, Shi E X, Zhang W L, Yang B S. Electroanalysis, 2017, 29(5):1232-1242
Zhao Y Q, Feng J Y, Liang A H, Yang B S. Spectrochim. Acta Part A, 2009, 71(5):1756-1761
Rong Z J, Tian Y N, Yang B S. RSC Adv., 2014, 4(81):43262-43269
Zhao Y Q, Yan J, Song L, Feng Y N, Liang A H, Yang B S. J. Fluoresc., 2012, 22(1):485-494
Zhang W L, Shi E X, Feng Y N, Zhao Y Q, Yang B S. RSC Adv., 2017, 7(82):51773-51788
Zhao Y Q, Diao X L, Yan J, Feng Y N, Wang Z J, Liang A H, Yang B S. J. Lumin., 2012, 132(4):924-930
Shi E X, Zhang W L, Zhao Y Q, Yang B S. RSC Adv., 2017, 7(44):27139-27149
Krupa A, Preethi G, Srinivasan N. J. Mol. Biol., 2004, 339:1025-1039
Zhao Y Q, Yan J, Chao J B, Liang A H, Yang B S. J. Biol. Inorg. Chem., 2013, 18(1):123-136
Yixuan Zhu , Qingtong Wang , Jin Li , Lin Chen , Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
Tinghui AN , Dong XIANG , Jiaqi LI , Jiawei WANG , Shuming YU , Nan WANG , Kedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412
Yihui Song , Shangshang Qin , Kai Wu , Chengyun Jin , Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Nana Wang , Gaosheng Zhang , Huosheng Li , Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
Yajun Jian , Quanguo Zhai , Quan Gu , Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006
Concentration of CPZ from a to u was 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 μmol·L-1, respectively; All experiments were carried out in 10 mmol·L-1 Hepes buffer (pH=7.4); Inset: plot of lg[(F0-F)/(F-F∞)] vs lg cCPZ, f and fitting curve
Condition: 10 mmol·L-1 Hepes buffer, pH=7.4, 25 ℃; Ratio of CPZ added to apoC-EoCen (25 μmol·L-1): 0 (a), 10 (b)
Cartoon ribbon model structure of apoC-EoCen; Black dotted line represents the distance between Tyr and CPZ; green: apoC-EoCen, yellow: CPZ, purple: Tyr
Condition: (A) Titrating apoC-EoCen with 1 mmol·L-1 Tb3+, the protein concentration was 10 μmol·L-1, from a to h, the ratios of Tb3+ added to apoC-EoCen were 0, 0.33, 0.66, 1, 1.33, 1.66, 2, 2.33, respectively; (B) cCPZ/capoC-EoCen=10, the experiment condition was the same as A; (C) Fluorescence intensity selected at 545 nm in Fig.A as curve a, and fluorescence intensity at 545 nm in Fig.B as curve b; (D) Ratios of CPZ added to Tb 2-apoC-EoCen were 0 (a), 10 (b), respectively, capoC-EoCen=25 μmol·L-1
apoC-EoCen concentration was 10 μmol·L-1; apoC-EoCen was titrated with 1 mmol·L-1 Tb3+, and the experiments were performed in Hepes (10 mmol·L-1, pH=7.4); from a to h, the ratios of Tb3+ added to apoC-EoCen were 0, 0.33, 0.66, 1, 1.33, 1.66, 2, 2.33, respectively
10 mmol·L-1 Hepes, pH=7.4, 4 ℃ reaction for 3 h; lane 1: pBR322 DNA, lanes 2~10: 0.003 5 g·L-1 pBR322 DNA added with 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20 and 25 μmol·L-1 apoC-EoCen, respectively, Vtotal=10 μL
10 mmol·L-1 Hepes, pH=7.4, at 4 ℃ for 3 h, total volume: 10 μL; Lane 1: pBR322 DNA, lanes 2~10: pBR322 DNA+apoC-EoCen, lanes 3~10: pBR322 DNA+apoC-EoCen+CPZ (cCPZ/capoC-EoCen)=5, 10, 15, 20, 25, 30, 40, 50, respectively; final pBR322 DNA concentration: 0.003 5 g·L-1
Condition: (A) 10 mmol·L-1 Hepes, pH=7.4, at 4 ℃ for 6 h, total volume=10 μL, protein concentration=200 μmol·L-1; (C) protein concentration=25 μmol·L-1, target peptide ratio=1:1, CPZ concentration=250, 750 μmol·L-1, total volume= 300 μL at 25 ℃; (D) apoC-EoCen (blue), XPC (purple), CPZ (green)
10 mmol·L-1 Hepes, pH=7.4, 30 ℃ reaction in a water bath for 10 h, total volume=10 μL, protein concentration=100 μmol·L-1