Citation: Yu-Xia LI, Shuai-Shuai LI, Xiao-Qin LIU, Lin-Bing SUN. Preparation of CuCl@MIL-101(Cr) by Double-Solvent Method and Investigation on Adsorptive Desulfurization Performance[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 259-266. doi: 10.11862/CJIC.2021.016 shu

Preparation of CuCl@MIL-101(Cr) by Double-Solvent Method and Investigation on Adsorptive Desulfurization Performance

  • Corresponding author: Lin-Bing SUN, lbsun@njtech.edu.cn
  • Received Date: 14 August 2020
    Revised Date: 16 November 2020

Figures(11)

  • Herein, a representative metal-organic framework (MOF), MIL-101(Cr), with a large specific surface area and good hydrothermal stability, has been chosen as porous support. The introducing of Cu(Ⅱ) precursor and reduction to Cu(Ⅰ) were sequentially occurred in the pores of MIL-101(Cr) via double-solvent method (DSM) in which the CuCl2 was directly used for reduction and vitamin C was employed as a green reductant. The DSM is effective in preparing Cu(Ⅰ) sites on support MIL-101(Cr). By using the DSM, it can ensure that the structure of support material was maintained on account of mild operating conditions and all copper species in MIL-101(Cr) were reduced to Cu (Ⅰ). When CuCl content was 2.85 mmol·g-1, the obtained Cu(Ⅰ)-containing materials exhibited a thiophene adsorption capacity (up to 0.175 mmol·g-1), obviously higher than that of pristine MIL 101(Cr) (0.112 mmol·g-1). This method thus offers a useful, controllable and green approach to form Cu(Ⅰ) sites within MOFs under relatively facile conditions. The resultant adsorbents exhibit obviously enhanced adsorptive desulfurization performance because of the specific interaction between Cu(Ⅰ) and thiophenic sulfur compounds.
  • 加载中
    1. [1]

      Chi M Y, Su T, Sun L L, Zhu Z G, Liao W P, Ren W Z, Zhao Y C, Lu H. Appl. Catal. B, 2020, 275:119134  doi: 10.1016/j.apcatb.2020.119134

    2. [2]

      Zhang H R, Zhang Q, Zhang L, Pei T T, Dong L, Zhou P Y, Li C Q, Xia L X. Chem. Eng. J., 2018, 334:285-295  doi: 10.1016/j.cej.2017.10.042

    3. [3]

      Iravani A A, Gunda K, Ng F T T. AIChE J., 2017, 63(11):5044-5053  doi: 10.1002/aic.15852

    4. [4]

      LIU Z N, GENG Y F, SHI Q, LI H S, SHI D X, WU Q, ZHAO Y, FENG C H, JIAO Q Z. Chinese J. Inorg. Chem., 2019, 35(1):34-42
       

    5. [5]

      Yang G X, Yang H L, Zhang X Y, Iqbal K, Feng F, Ma J R, Qin J H, Yuan F, Cai Y S, Ma J T. J. Hazard. Mater., 2020, 397:122654  doi: 10.1016/j.jhazmat.2020.122654

    6. [6]

      He Q X, Jiang Y, Tan P, Liu X Q, Qin J X, Sun L B. ACS Appl. Mater. Interfaces, 2017, 9:29445-29450  doi: 10.1021/acsami.7b09300

    7. [7]

      Khan N A, Hasan Z, Jhung S H. Chem. Eur. J., 2014, 20(2):376-380  doi: 10.1002/chem.201304291

    8. [8]

      Rajendran A, Cui T Y, Fan H X, Yang Z F, Feng J, Li W Y. J. Mater. Chem. A, 2020, 8(5):2246-2285

    9. [9]

      Yang R T, Hernandez-Maldonado A J, Yang F H. Science, 2003, 301(5629):79-81  doi: 10.1126/science.1085088

    10. [10]

      Jiang W, Zhu K, Li H P, Zhu L H, Hua M Q, Xiao J, Wang C, Yang Z Z, Chen G Y, Zhu W S, Li H M, Dai S. Chem. Eng. J., 2020, 394:124831  doi: 10.1016/j.cej.2020.124831

    11. [11]

      Xu J S, Shi C X, Xiao Z R, Gao R J, Li Y T, Zhang X W, Pan L, Zou J J. Chem. Commun., 2020, 56(41):5540-5543  doi: 10.1039/D0CC00960A

    12. [12]

      Cychosz K A, Wong-Foy A G, Matzger A J. J. Am. Chem. Soc., 2009, 131(40):14538-14543  doi: 10.1021/ja906034k

    13. [13]

      Jiang W J, Yin Y, Liu X Q, Yin X Q, Shi Y Q, Sun L B. J. Am. Chem. Soc., 2013, 135(22):8137-8140  doi: 10.1021/ja4030269

    14. [14]

      Wang J, Xu F, Xie W J, Mei Z J, Zhang Q Z, Cai J, Cai W M. J. Hazard. Mater., 2009, 163(2/3):538-543  doi: 10.1016/j.jhazmat.2008.07.027

    15. [15]

      ZHANG H, WANG J E, DONG H, YANG N N, PAN L Y, SHEN H Y, HU M Q, CHENG J J. Chinese J. Inorg. Chem., 2020, 36(8):1475-1484
       

    16. [16]

      Tan P, Xue D M, Zhu J, Jiang Y, He Q X, Hou Z, Liu X Q, Sun L B. AIChE J., 2018, 64(11):3786-3793

    17. [17]

      Li S W, Li J R, Jin Q P, Yang Z, Zhang R L, Gao R M, Zhao J S. J. Hazard. Mater., 2017, 337:208-216
       

    18. [18]

      Wang T T, Fang Y Y, Dai W, Hu L F, Ma N, Yu L. RSC Adv., 2016, 6(107):105827-105832

    19. [19]

      Wang T T, Li X X, Dai W, Fang Y Y, Huang H. J. Mater. Chem. A, 2015, 3(42):21044-21050

    20. [20]

      Khan N A, Bhadra B N, Jhung S H. Chem. Eng. J., 2018, 334:2215-2221

    21. [21]

      Tan P, Jiang Y, Sun L B, Liu X Q, AlBahily K, Ravon U, Vinu A. J. Mater. Chem. A, 2018, 6(47):23978-24012

    22. [22]

      Wang J J, Wei J. J. Mater. Chem. A, 2017, 5(9):4651-4659

    23. [23]

      Khan N A, Jhung S H. Angew. Chem. Int. Ed., 2012, 51(5):1198-1201  doi: 10.1016/j.cej.2017.11.159

    24. [24]

      Van de Voorde B, Boulhout M, Vermoortele F, Horcajada P, Cunha D, Lee J S, Chang J S, Gibson E, Daturi M, Lavalley J C, Vimont A, Beurroies I, De Vos D E. J. Am. Chem. Soc., 2013, 135(26):9849-9856  doi: 10.1021/ja403571z

    25. [25]

      Subhan F, Aslam S, Yan Z F, Zhen L, Ahmad A, Naeem M, Zeng J B, Ullah R, Etim U J. Chem. Eng. J., 2017, 330:372-382

    26. [26]

      Qi S C, Qian X Y, He Q X, Miao K J, Jiang Y, Tan P, Liu X Q, Sun L B. Angew. Chem. Int. Ed., 2019, 58(30):10104-10109

    27. [27]

      Subhan F, Aslam S, Yan Z F, Zhen L, Ikram M, Ullah R, Etim U J, Ahmad A. Chem. Eng. J., 2018, 339:557-565

    28. [28]

      Khan N A, Uddin N, Choi C H, Jhung S H. J. Phys. Chem. C, 2017, 121(21):11601-11608

    29. [29]

      Khan N A, Jhung S H. J. Hazard. Mater., 2017, 325:198-213  doi: 10.1016/j.jhazmat.2016.11.070

    30. [30]

      Miao K J, He Q X, Li Y X, Liu X Q, Jiang Y, Gu C, Sun L B. Inorg. Chem., 2019, 58(16):11085-11090

    31. [31]

      Qiu X, Zhong W, Bai C, Li Y. J. Am. Chem. Soc., 2016, 138(4):1138-1141

    32. [32]

      Li S S, Li Y X, Jin M M, Miao K J, Gu M X, Liu X Q, Sun L B. Fuel, 2020, 259:116221

    33. [33]

      Ahmed I, Jhung S H. Chem. Eng. J., 2015, 279:327-334  doi: 10.1016/j.cej.2015.05.035

    34. [34]

      Wang D, Wu G, Zhao Y, Cui L, Shin C H, Ryu M H, Cai J. Environ. Sci. Pollut. Res., 2018, 25:28109-28119

    35. [35]

      Li Y X, Li S S, Xue D M, Liu X Q, Jin M M, Sun L B. J. Mater. Chem. A, 2018, 6(19):8930-8939

    36. [36]

      Li Y X, Shen J X, Peng S S, Zhang J K, Wu J, Liu X Q, Sun L B. Nat. Commun., 2020, 11:3206

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    19. [19]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(23)
  • Abstract views(2012)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return