Citation: YAO Shou-Guang, DOU Fei, LIU Dun, CHENG Jie. Electrochemical Performance of Mn and Mg Co-doped Ni(OH)2[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(1): 95-102. doi: 10.11862/CJIC.2021.014 shu

Electrochemical Performance of Mn and Mg Co-doped Ni(OH)2

  • Corresponding author: YAO Shou-Guang, zjyaosg@126.com
  • Received Date: 16 July 2020
    Revised Date: 12 November 2020

Figures(7)

  • To reduce costs and improve performance of the positive electrode materials, the buffer solution method was used to prepare manganese and magnesium doped nickel hydroxide, labeled as Ni0.82Mn0.18-xMgx(OH)2 (x=0.06, 0.09, 0.12). XRD, XPS and SEM tests were used to characterize the crystal structure, manganese valence state and morphology of the samples. Cyclic voltammetry and constant current charge-discharge tests were used to study the influence of Mn and Mg doping ratio on the electrochemical performance of Ni(OH)2. The results showed that the samples doped Mn and Mg were all β-phase and the crystal particles were smaller; Ni0.82Mn0.09Mg0.09(OH)2 showed excellent electrode reaction reversibility and charge-discharge performance. Specific discharge capacity (290.6 mAh·g-1) of Ni0.82Mn0.09Mg0.09(OH)2 was better than that of the commercial β-Ni(OH)2 (281.1 mAh·g-1) at 100 mA·g-1; moreover, after cycling for 30 cycles at a current density of 500 mA·g-1, the specific discharge capacity of Ni0.82Mn0.09Mg0.09(OH)2 was no decay, indicating its cycle stability is better than that of the commercial β-Ni(OH)2.
  • 加载中
    1. [1]

      CHENG J. CN101127393. 2008-02-20.

    2. [2]

      Cheng J, Zhang L, Yang Y S, Yue H W, Gao P C, Xin D W. Electrochem. Commun., 2007, 9(11):2639-2642  doi: 10.1016/j.elecom.2007.08.016

    3. [3]

      Zhang L, Cheng J, Yang Y S, Yue H W, Xin D W, Gao P C. J. Power Sources, 2008, 179:381-387  doi: 10.1016/j.jpowsour.2007.12.088

    4. [4]

      Cheng J, Wen Y H, Cao G P, Yang Y S. J. Power Sources, 2011, 196(3):1589-1592  doi: 10.1016/j.jpowsour.2010.08.009

    5. [5]

      Wang Y X, Hu Z A, Wu H Y. Mater. Chem. Phys., 2011, 126(3):580-583

    6. [6]

      Zhang Q, Xu Y H, Wang X L. Mater. Chem. Phys., 2004, 86(2):293-297

    7. [7]

      CHANG Y Q, CHEN Y L, WANG H W, FU G R, JIN X Q, XIE L J, HU Z A. New Chemical Materials, 2011, 39(2):79-83
       

    8. [8]

      PAN Y, LEI H, GUO R G, HAN X, YU L M, JIANG W Q. Chemical Reagents, 2014, 36(10):949-952
       

    9. [9]

      WEN S S, LIANG X L, YAO J H, PAN G L, LI Y W, ZHANG L Z. Rare Metal Materials Engineering, 2015, 44(12):3151-3155
       

    10. [10]

      Wu X H, Feng Q P, Wang M, Huang G W. J. Power Sources, 2016, 329:170-178  doi: 10.1016/j.jpowsour.2016.08.072

    11. [11]

      LÜ X. Thesis for the Master of Kunming University of Science and Technology. 2017.

    12. [12]

      Miao C C, Zhu Y J, Huang L G, Zhao T Q. Ionics, 2015, 21(8):2295-2302  doi: 10.1007/s11581-015-1387-1

    13. [13]

      Zhao L, Liu Z H, Jin L. Trans. Nonferrous Met. Soc. China, 2013, 23(4):1033-1038  doi: 10.1016/S1003-6326(13)62563-7

    14. [14]

      Masound S, Hamideh S, Omid A, Fatemeh D. J. Cluster Sci., 2013, 24(1):365-376  doi: 10.1007/s10876-013-0558-3

    15. [15]

      Shangguan E B, Chang Z R, Tang H G, Yuan X Z, Wang H J. Int. J. Hydrogen Energy, 2010, 35(18):9716-9724  doi: 10.1016/j.ijhydene.2010.06.096

    16. [16]

      LI X F, LI Z, DONG H C, XIA T C. Journal of Zhengzhou University of Light Industry (Natural Science), 2012, 27(1):7-11
       

    17. [17]

      LI X F, LI Z, SONG Y H, DONG H C, XIA T C. Chinese Journal of Power Sources, 2013, 37(2):240-242, 300
       

    18. [18]

      HAN E S, KANG H X, DONG Q, WEI Z H, YUAN Z Q. Chinese Journal of Applied Chemistry, 2007(9):84-87
       

    19. [19]

      WANG X, FU X Z, LIANG Y, LIAO D W. Chinese Journal of Power Sources, 2007(9):732-735
       

    20. [20]

      LIU C J, CHEN S J, LI P P. Rare Metal Materials Engineering, 2012, 41(S2):348-352
       

    21. [21]

      CHEN J M, SUN J T, SONG Y H. Journal of Synthetic Crystals, 2016(6):1539-1543
       

    22. [22]

      YAO S G, DOU F, XING R Y, CHENG J, XIAO M. Chinese J. Inorg. Chem., 2019, 35(8):1403-1410
       

    23. [23]

      PAN G X, CAO F, TANG P S, CHEN H F, XU M H, TONG Y H. Journal of Minerals, 2012, 32(2):244-248
       

    24. [24]

      XIAO M, XING R Y, YAO S G, CHENG J, SHEN Y J, YANG Y S. J. Inorg. Mater., 2019, 34(7):703-708
       

    25. [25]

      WANG J R, GONG J B, YANG Z Y. Powder Metallurgy Industry, 2012, 22(2):22-26
       

    26. [26]

      ZHI H J. Xinjiang Youse Jinshu, 2003(1):25-27

    27. [27]

      PENG M X, SHEN X Q, WEI Y H. Materials Reports, 2007, 22(11):121-124
       

    28. [28]

      Klug H P, Alexander L E C. X-ray Diffraction Procedures for Poly-crystalline and Amorphous Materials. 2nd ed. New York; Wiley-Inter-science, 1974:511-517

    29. [29]

      Meyer M, Bée A, Talbot D, Cabuil V, Boyer J M, Répetti B, Garrigos R. J. Colloid Interface Sci., 2004, 277:309-315

    30. [30]

      LI Y J, HUANG Y G, OU L F, YANG W, FENG Y Y, LU Z T. Carbon Techniques, 2019, 38(1):28-31, 40
       

    31. [31]

      SUN H F, JIANG W Q, YU L M, FU Z Z, GUO R G, LI T, YANG H. Materials Reports, 2011, 25(4):49-52
       

    32. [32]

      WANG Y M, ZHANG Y L, MA L L, LEI D, WEI Z G. Journal of Lanzhou University of Technology, 2014, 40(3):5-9
       

    33. [33]

      LI X S, HAO W X, ZHANG Y Q, MENG J, YU H Y. J. Funct. Mater., 2016, 8(47):8200-8204, 8210
       

    34. [34]

      LUO F C, CHEN Q Y, LI X H. Chinese Journal of Power Sources, 2007, 31(8):640-643
       

    35. [35]

      WU M Y. Thesis for the Master of Zhejiang University. 2006.

    36. [36]

      DENG M M, ZHANG D W, SHAO Y, HE X D, CEHN C H. Chin. J. Chem. Phys., 2020, 33(4):485-494
       

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    3. [3]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    9. [9]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    16. [16]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

Metrics
  • PDF Downloads(5)
  • Abstract views(1618)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return