Citation: CHAO Ming-Kun, MA Gui-Jun. Flux-Assisted Preparation of Sm2Ti2S2O5 Powder Applied to Photocatalytic H2 Production from Water[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(1): 16-22. doi: 10.11862/CJIC.2021.006 shu

Flux-Assisted Preparation of Sm2Ti2S2O5 Powder Applied to Photocatalytic H2 Production from Water

  • Corresponding author: MA Gui-Jun, magj@shanghaitech.edu.cn
  • Received Date: 16 June 2020
    Revised Date: 11 September 2020

Figures(9)

  • Sm2Ti2S2O5 (STSO) was prepared by a flux method using TiO2, TiS2 and Sm2O3 as reactants, and eutectic of LiCl and KCl (LiCl-KCl) or LiCl and CsCl (LiCl-CsCl) as flux. By analyzing X-ray diffraction patterns of the samples synthesized at different temperatures, it was firstly demonstrated that the threshold crystallization temperature of STSO was 520℃, much lower than the value of 650℃ that was reported previously as the lowest temperature for synthesizing STSO. Scanning electron microscope images showed that the synthesized STSO particles owned a platelike morphology. At the same temperature, LiCl-CsCl led to lower plate thickness than LiCl-KCl. The average photocatalytic H2 production rate showed volcano-like profile to synthesizing temperature, which was likely due to the effect of particle size and crystallinity on activity. Variation of hole sacrificial reagent showed that ascorbic acid produced much higher H2 evolution activity than Na2S-Na2SO3, triethylamine, triethanolamine and methanol. For the purpose of comparing with the literatures, Na2S-Na2SO3 was employed as sacrificial reagent in the following stability test. It was found that the as-prepared STSO exhibited stable H2 production over 20 h under visible light (Xe lamp, λ>420 nm) irradiation, and having nearly identical characterization results in XPS, XRD and TEM before and after photocatalytic reaction.
  • 加载中
    1. [1]

      Kudo A, Miseki K. Chem. Soc. Rev., 2009, 38(1):253-278
       

    2. [2]

      Takata T, Domen K. Dalton Trans., 2017, 46(32):10529-10544  doi: 10.1039/C7DT00867H

    3. [3]

      Michael G W, Emily L W, James R M, Shannon W B, Mi Q X, Eliza-beth A S, Nathan S L. Chem. Rev., 2010, 110:6446-6473  doi: 10.1021/cr1002326

    4. [4]

      Suzuki T, Hisatomi T, Teramura K, Shimodaira Y, Kobayashi H, Domen K. Phys. Chem. Chem. Phys., 2012, 14(44):15475-15481  doi: 10.1039/c2cp43132g

    5. [5]

      Ma G J, Suzuki Y, Singh R B, Iwanaga A, Moriya Y, Minegishi T, Liu J, Hisatomi T, Nishiyama H, Katayama M, Seki K, Furube A, Yama-da T, Domen K. Energy Environ. Sci., 2014, 7(7):2239-2242  doi: 10.1039/C4EE00091A

    6. [6]

      Ma G J, Suzuki Y, Singh R B, Iwanaga A, Moriya Y, Minegishi T, Liu J, Hisatomi T, Nishiyama H, Katayama M, Seki K, Furube A, Yama-da T, Domen K. Chem. Sci., 2015, 6(8):4513-4518  doi: 10.1039/C5SC01344E

    7. [7]

      Hisatomi T, Okamura S, Liu J Y, Shinohara Y, Ueda K, Higashi T, Katayama M, Minegishi T, Domen K. Energy Environ. Sci., 2015, 8(11):3354-3362  doi: 10.1039/C5EE02431E

    8. [8]

      Song Z M, Hisatomi T, Chen S S, Wang Q, Ma G, Li S, Zhu X, Sun S, Domen K. ChemSusChem, 2019, 12(9):1906-1910  doi: 10.1002/cssc.201802306

    9. [9]

      Wang Q, Nakabayashi M, Hisatomi T, Sun S, Akiyama S, Wang Z, Pan Z, Xiao X, Watanabe T, Yamada T, Shibata N, Takata T, Domen K. Nat. Mater., 2019, 18(8):827-832  doi: 10.1038/s41563-019-0399-z

    10. [10]

      Goto Y, Seo J, Kumamoto K, Hisatomi T, Mizuguchi Y, Kamihara Y, Katayama M, Minegishi T, Domen K. Inorg. Chem., 2016, 55(7):3674-3679  doi: 10.1021/acs.inorgchem.6b00247

    11. [11]

      Ishikawa A, Takata T, Junko N, Hara M, Kobayashi H, Domen K. J. Am. Chem. Soc., 2002, 124(45):13547-13553  doi: 10.1021/ja0269643

    12. [12]

      Ma G J, Chen S S, Kuang Y B, Akiyama S, Hisatomi T, Nakabayashi M, Shibata N, Katayama M, Minegishi T, Domen K. J. Phys. Chem. Lett., 2016, 7(19):3892-3896  doi: 10.1021/acs.jpclett.6b01802

    13. [13]

      Zhao W, Maeda K, Zhang F X, Hisatomi T, Domen K. Phys. Chem. Chem. Phys., 2014, 16(24):12051-12056  doi: 10.1039/c3cp54668c

    14. [14]

      Ishikawa A, Yamada Y, Ishikawa A, Kondo J N, Hara M, Kobayashi H, Domen K. Chem. Mater., 2003, 15(23):4442-4446  doi: 10.1021/cm034540h

    15. [15]

      Ishikawa A, Takata T, Matsumura T, Kondo J N, Hara M, Kobayashi H, Domen K. J. Phys. Chem. B, 2004, 35(19):2637-2642
       

    16. [16]

      Li R G, Chen Z, Zhao W, Zhang F X, Maeda K, Huang B K, Shen S, Domen K, Li C. J. Phys. Chem. C, 2012, 117(1):376-382

    17. [17]

      Zhang F X, Maeda K, Takata T, Domen K. J. Catal., 2011, 280(1):1-7
       

    18. [18]

      Zhang F X, Maeda K, Takata T, Domen K. Catal. Today, 2012, 185(1):253-258

    19. [19]

      Zhang F X, Maeda K, Takata T, Domen K. Chem. Commun., 2010, 46(39):7313-7315  doi: 10.1039/c0cc02425b

    20. [20]

      Ma G J, Kuang Y B, Murthy D H K, Hisatomi T, Seo J, Chen S S, Matsuzaki H, Suzuki Y, Katayama M, Minegishi T, Seki K, Furube A, Domen K. J. Phys. Chem. C, 2018, 122(25):13492-13499  doi: 10.1021/acs.jpcc.7b12087

    21. [21]

      Kang Z Y, He M G, Lu G X, Zhang Y. Calphad, 2016, 55:208-218  doi: 10.1016/j.calphad.2016.09.005

    22. [22]

      Basin A S, Kaplun A B, Meshalkin A B, Uvarov N F. Russ. J. Inorg. Chem., 2008, 53(9):1509-1511

  • 加载中
    1. [1]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    16. [16]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(10)
  • Abstract views(1817)
  • HTML views(376)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return