Citation: LIU Xue-Fen, YU Zhe-Jian, XU Liang-Xuan, CHEN Hao, WANG Tian-Qi, YANG Peng, LUO Shu-Ping. Fluoric Phenanthrolines and Their Heteroleptic Copper Complexes: Synthesis and Application in Photocatalytic Hydrogen Evolution from Water[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(11): 2023-2030. doi: 10.11862/CJIC.2020.248 shu

Fluoric Phenanthrolines and Their Heteroleptic Copper Complexes: Synthesis and Application in Photocatalytic Hydrogen Evolution from Water

  • Corresponding author: YANG Peng, yangpenghz@hznu.edu.cn
  • Received Date: 24 December 2019
    Revised Date: 29 September 2020

Figures(7)

  • A series of novel bidentate ligands of fluoro phenanthrolines were designed and synthesized, which could formulate a series of heteroleptic copper photosensitizers CP1~CP4 with Cu(MeCN)4PF6 and Xantphos as P ligand. The photosensitive activities of this copper complex were researched in water reduction system, and the turnover number (TON) of hydrogen evolution was up to 896. The absorption spectrum and fluorescence emission spectrum of the copper complexes indicated the good stability in solution. The oxidation quenching is the main quenching pathway in water reduction system, which was confirmed by the fluorescence quenching experiments. Moreover, a preliminary explanation and discussion of the structure-activity relationship and the mechanism of photocatalytic hydrogen evolution from water were carried out.
  • 加载中
    1. [1]

      (a) Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43: 7520-7535
      (b)Berardi S, Drouet S, Llobet A, et al. Chem. Soc. Rev., 2014, 43: 7501-7519

    2. [2]

      Esswein A J, Nocera D G. Chem. Rev., 2007, 107(10):4022-4047  doi: 10.1021/cr050193e

    3. [3]

      (a) Kalyanasundaram K, Kiwi J, Grätzel M. Helv. Chim. Acta, 1978, 61: 2720-2730
      (b)Kirch M, Lehn J M, Sauvage J P. Helv. Chim. Acta, 1979, 62: 1345-1384
      (c)Kiwi J, Gratzel M. J. Am. Chem. Soc., 1978, 100(20): 6314-6320

    4. [4]

      (a) Abbotto A, Manfredi N. Dalton Trans., 2011, 40: 12421-12438
      (b)Ganga G L, Puntoriero F, Campagna S, et al. Faraday Discuss., 2012, 155: 177-190
      (c)Deponti E, Natali M. Dalton Trans., 2016, 45: 9136-914
      (d)Lin H, Liu D, Wang X X, et al. Phys. Chem. Chem. Phys., 2015, 17: 10726-10736
      (e)Na Y, Wei P C, Zhou L. Chem. Eur. J., 2016, 22: 10365-10368

    5. [5]

      (a) Jiang W N, Liu J H, Li C. Inorg. Chem. Commun., 2012, 16: 81-85
      (b)Zhou R W, Manbeck G F, Brewer K J, et al. Chem. Commun., 2015, 51: 12966-12969
      (c)Mengele A K, Kaufhold S, Rau S, et al. Dalton Trans., 2016, 45: 6612-6618

    6. [6]

      (a) Du P W, Knowles K, Eisenberg R. J. Am. Chem. Soc., 2008, 130(38): 12576-12577
      (b)Wang C J, Chen Y, Fu W F. Dalton Trans., 2015, 44: 14483-14493
      (c)Whang D R, Park S Y. ChemSusChem, 2015, 8: 3204-3207
      (d)Kitamoto K, Sakai K. Chem. Commun., 2016, 52: 1385-1388

    7. [7]

      (a) Disalle B F, Bernhard S. J. Am. Chem. Soc., 2011, 133(31): 11819-11821
      (b)Gärtner F, Denurra S, Beller M, et al. Chem. Eur. J., 2012, 18: 3220-3225
      (c)Lu Y, McGoldrick N, Murphy F, et al. Chem. Eur. J., 2016, 22(32): 11349-11356
      (d)Xu D N, Chu Q Q, Fang B Z, et al. J. Catal., 2015, 325: 118-127

    8. [8]

      Zhang X J, Jin Z L, Li Y X, et al. J. Phys. Chem. C, 2009, 113(6):2630-2635  doi: 10.1021/jp8085717

    9. [9]

      (a)Probst B, Guttentag M, Rodenberg A, et al. Inorg. Chem., 2011,50(8):3404-3412
      (b)Du P, Schneider J, Li F, et al. J. Am. Chem. Soc., 2008, 130(15):5056-5058

    10. [10]

      Horiuchi Y, Toyao T, Saito M, et al. J. Phys. Chem. C, 2012, 116(39):20848-20853  doi: 10.1021/jp3046005

    11. [11]

      Cahiez G, Duplais C, Buendia J. Chem. Rev., 2009, 109(3):1434-1476  doi: 10.1021/cr800341a

    12. [12]

      (a) Zhang W, Hong J D, Zheng J W, et al. J. Am. Chem. Soc.,2011, 133(51): 20680-20683
      (b)Lazarides T, Mccormick T, Du P, et al. J. Am. Chem. Soc., 2009, 131(26): 9192-9194
      (c)Mccormick T M, Calitree B, Orchard A, et al. J. Am. Chem. Soc., 2010, 132(44): 15480-15483
      (d)Chan S F, Chou M, Creutz C, et al. J. Am. Chem. Soc., 1981, 103(2): 369-379

    13. [13]

      (a) Huang G L, Shi R, Zhu Y F. J. Mol. Catal. A: Chem., 2011, 348: 100-105
      (b)He X D, Yin L X, Li Y Q. New J. Chem., 2019, 43: 6577-6586
      (c)Gu L Y, Lei Y, Luo J, et al. ACS Appl. Mater. Interfaces., 2019, 11: 24789-24794
      (d)Yang H M, Guo M M, Hu X Y, et al. Appl. Surf. Sci., 2019, 494: 501-507

    14. [14]

    15. [15]

      Larsen A F, Ulven T. Org. Lett., 2011, 13(13):3546-3548  doi: 10.1021/ol201321z

    16. [16]

      Zhao Y F, Schwab M G, Kiersnowski A, et al. J. Mater. Chem. C, 2016, 4:4640-4646  doi: 10.1039/C6TC00780E

    17. [17]

      (a) Luo S P, Mejía E, Friedrich A, et al. Angew. Chem. Int. Ed., 2013, 52(1): 419-423
      (b)Luo S P, Chen N Y, Sun Y Y, et al. Dyes Pigm., 2016, 134: 580-585

    18. [18]

      Knorn M, Rawner T, Czerwieniec R, et al. ACS Catal., 2015, 5(9):5186-5193  doi: 10.1021/acscatal.5b01071

    19. [19]

      Yamamoto K, Kitamoto K, Yamauchi K, et al. Chem. Commun., 2015, 51(77):14516-14519  doi: 10.1039/C5CC03558A

    20. [20]

      (a) Yu Z J, Chen H, Lennox A J J, et al. Dyes Pigm., 2019, 162: 771-775
      (b)Chen H, Xu L X, Yan L J, et al. Dyes Pigm., 2020, https://doi.org/10.1016/j.dyepig.2019.108000.

    21. [21]

      (a) Krishnan C Ⅴ, Creutz C, Mahajan D, et al. Isr. J. Chem., 1982, 22: 98-106
      (b)Krishnan C Ⅴ, Sutin N. J. Am. Chem. Soc., 1981, 103: 2141-2142

    22. [22]

      Kirch M, Lehn J M, Sauvage J P. Helv. Chim. Acta, 1979, 62:1345-1384  doi: 10.1002/hlca.19790620449

  • 加载中
    1. [1]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    2. [2]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    5. [5]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(0)
  • Abstract views(736)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return