Citation: HE Hong-Bo, ZHANG Meng-Fan, LIU Zhen, FAN Qi-Zhe, YANG Kai, YU Chang-Lin. Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1413-1420. doi: 10.11862/CJIC.2020.177 shu

Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets

  • Received Date: 13 April 2020
    Revised Date: 20 May 2020

Figures(9)

  • By using F doping, a series of BiOCl nanosheets with highly exposed (001) facets were synthesized by a solvothermal-calcination route. The fabricated bare BiOCl and F doped BiOCl nanosheets were characterized by some physicochemical methods, e.g. X-ray diffraction, N2 physical absorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and photoelectrochemical measurement. The results show that F doping with moderate content can promote the growth of (110) crystal plane and suppress the crystal size, inducing the for-mation of highly exposed (001) facets. Moreover, an obvious increase in surface area and surface -OH groups were obtained after F-doping. Under simulated sunlight irradiation, F doping obtained significant enhancement in the degradation of rhodamine B, and about 1.67 times increase over F1.0-BiOCl than that of bare BiOCl. Moreover, the degradation rate of F1.0-BiOCl was 1.24 times that of commercial P25(TiO2) in removal of acid orange Ⅱ. The main reasons for the increase of activity are that the exposed (001) facets induced by F-doping promoted dyes adsorption, and the separation of photo-generated electron-hole pair was also accelerated. Therefore, F-BiOCl nanosheets display superior photocatalytic performance for organic dyes degradation.
  • 加载中
    1. [1]

      He H B, Luo Z Z, Tang Z Y, et al. Appl. Surf. Sci., 2019, 490:460-468

    2. [2]

      Liu B X, Wang J S, Wu J S, et al. J. Mater. Chem. A, 2014, 2:1947-1954
       

    3. [3]

      MA Xiao-Shuai, CHEN Fan-Yun, YU Chang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(2):217-225
       

    4. [4]

      Liu Z, Tian J, Zeng D B, et al. Mater. Res. Bull., 2017, 94:298-306

    5. [5]

      Li J D, Wei L F, Yu C L, et al. Appl. Surf. Sci., 2015, 358:168-174
       

    6. [6]

      Yu C L, He H B, Liu X Q, et al. Chin. J. Catal., 2019, 40(8):1212-1221

    7. [7]

      Chen M J, Huang Y, Chu W. Chin. J. Catal., 2019, 40(5):673-680

    8. [8]

      HE Hong-Bo, XUE Shuang-Shuang, YU Chang-Lin, et al. Chinese J. Inorg. Chem., 2016, 32(4):625-632
       

    9. [9]

      Liu B X, Wang J S, Li H Y, et al. J. Nanosci. Nanotechnol., 2013, 13:4117-4122
       

    10. [10]

      ZHONG Wei, XIA Ying-Fan, ZHAI Hang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(1):40-52
       

    11. [11]

      CHEN Fan-Yun, ZHANG Meng-Di, MA Xiao-Shuai, et al. Chinese J. Inorg. Chem., 2019, 35(6):1034-1040
       

    12. [12]

      HE Hong-Bo, LUO Yi-Ming, LUO Zhuang-Zhu, et al. Prog. Chem., 2019, 31(4):561-570
       

    13. [13]

      CHEN Jian-Chai, YU Chang-Lin, LI Jia-De, et al. J. Inorg. Mater., 2015, 30(9):943-949
       

    14. [14]

      Liu G, Yu J C, Lu G Q, et al. Chem. Commun., 2011, 47(24):6763-6783
       

    15. [15]

      Dandapat A, Gnayem H, Sasson Y. Chem. Commun., 2016, 52(10):2161-2164
       

    16. [16]

      Zhang X, Wang X B, Wang L W, et al. ACS Appl. Mater. Interfaces, 2014, 6(10):7766-7772
       

    17. [17]

      Weng S X, Fang Z B, Wang Z F, et al. ACS Appl. Mater. Interfaces, 2014, 6(21):18423-18428
       

    18. [18]

      Shan L W, Wang G L, Liu L Z, et al. J. Mol. Catal. A:Chem., 2015, 406:145-151
       

    19. [19]

      Chen Y Y, Zhou Y, Dong Q M, et al. CrystEngComm, 2018, 20:7838-7850

    20. [20]

      Qi Y L, Zheng Y F, Yin H Y, et al. J. Alloys Compd., 2017, 712:535-542

    21. [21]

      Weng S X, Chen B B, Xie L Y, et al. J. Mater. Chem. A, 2013, 1(9):3068-3075
       

    22. [22]

      Yu C L, He H B, Fan Q Z, et al. Sci. Total Environ., 2019, 694:133727-133734

    23. [23]

      Di J, Xia J X, Ji M X, et al. ACS Appl. Mater. Interfaces, 2015, 7(36):20111-20123

    24. [24]

      Li Y, Tian Y Y, Zhang R F, et al. Inorg. Chim. Acta, 2016, 439:123-129
       

    25. [25]

      FANG Wen, HE Hong-Bo, XUE Shuang-Shuang, et al. J. Chin. Ceram. Soc., 2016, 44(5):711-719
       

    26. [26]

      Liu C, Yan C Y, Lin J Z, et al. J. Mater. Chem. A, 2015, 3(40):20167-20173
       

    27. [27]

      Sun M L, Zhao Q H, Du C F, et al. RSC Adv., 2015, 5(29):22740-22752
       

    28. [28]

      Xie T P, Xu L J, Liu C L, et al. Dalton Trans., 2014, 43(5):2211-2220
       

    29. [29]

      Duo F F, Wang Y W, Fan C M, et al. Mater. Charact., 2015, 99:8-16
       

    30. [30]

      Jiang H, Liu J K, Wang J D, et al. CrystEngComm, 2015, 17(29):5511-5521
       

    31. [31]

      He H B, Xue S S, Wu Z, et al. J. Mater. Res., 2016, 31(17):2598-2607
       

    32. [32]

      Li J, Sun S Y, Chen R, et al. Environ. Sci. Pollut. Res., 2017, 24:9556-9565
       

    33. [33]

      Yu C L, He H B, Zhou W Q, et al. Sep. Purif. Technol., 2019, 217:137-146

    34. [34]

      He H B, Xue S S, Wu Z, et al. Chin. J. Catal., 2016, 37(11):1841-1850
       

    35. [35]

      Ge L, Han C C. Appl. Catal. B, 2012, 117:268-274
       

    36. [36]

      Fu H B, Pan C S, Yao W Q, et al. J. Phys. Chem. B, 2005, 109:22432-22439
       

  • 加载中
    1. [1]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    2. [2]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    3. [3]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    9. [9]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    12. [12]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    14. [14]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    20. [20]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

Metrics
  • PDF Downloads(19)
  • Abstract views(3179)
  • HTML views(1092)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return