Citation: HE Hong-Bo, ZHANG Meng-Fan, LIU Zhen, FAN Qi-Zhe, YANG Kai, YU Chang-Lin. Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1413-1420. doi: 10.11862/CJIC.2020.177 shu

Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets

  • Received Date: 13 April 2020
    Revised Date: 20 May 2020

Figures(9)

  • By using F doping, a series of BiOCl nanosheets with highly exposed (001) facets were synthesized by a solvothermal-calcination route. The fabricated bare BiOCl and F doped BiOCl nanosheets were characterized by some physicochemical methods, e.g. X-ray diffraction, N2 physical absorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and photoelectrochemical measurement. The results show that F doping with moderate content can promote the growth of (110) crystal plane and suppress the crystal size, inducing the for-mation of highly exposed (001) facets. Moreover, an obvious increase in surface area and surface -OH groups were obtained after F-doping. Under simulated sunlight irradiation, F doping obtained significant enhancement in the degradation of rhodamine B, and about 1.67 times increase over F1.0-BiOCl than that of bare BiOCl. Moreover, the degradation rate of F1.0-BiOCl was 1.24 times that of commercial P25(TiO2) in removal of acid orange Ⅱ. The main reasons for the increase of activity are that the exposed (001) facets induced by F-doping promoted dyes adsorption, and the separation of photo-generated electron-hole pair was also accelerated. Therefore, F-BiOCl nanosheets display superior photocatalytic performance for organic dyes degradation.
  • 加载中
    1. [1]

      He H B, Luo Z Z, Tang Z Y, et al. Appl. Surf. Sci., 2019, 490:460-468

    2. [2]

      Liu B X, Wang J S, Wu J S, et al. J. Mater. Chem. A, 2014, 2:1947-1954
       

    3. [3]

      MA Xiao-Shuai, CHEN Fan-Yun, YU Chang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(2):217-225
       

    4. [4]

      Liu Z, Tian J, Zeng D B, et al. Mater. Res. Bull., 2017, 94:298-306

    5. [5]

      Li J D, Wei L F, Yu C L, et al. Appl. Surf. Sci., 2015, 358:168-174
       

    6. [6]

      Yu C L, He H B, Liu X Q, et al. Chin. J. Catal., 2019, 40(8):1212-1221

    7. [7]

      Chen M J, Huang Y, Chu W. Chin. J. Catal., 2019, 40(5):673-680

    8. [8]

      HE Hong-Bo, XUE Shuang-Shuang, YU Chang-Lin, et al. Chinese J. Inorg. Chem., 2016, 32(4):625-632
       

    9. [9]

      Liu B X, Wang J S, Li H Y, et al. J. Nanosci. Nanotechnol., 2013, 13:4117-4122
       

    10. [10]

      ZHONG Wei, XIA Ying-Fan, ZHAI Hang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(1):40-52
       

    11. [11]

      CHEN Fan-Yun, ZHANG Meng-Di, MA Xiao-Shuai, et al. Chinese J. Inorg. Chem., 2019, 35(6):1034-1040
       

    12. [12]

      HE Hong-Bo, LUO Yi-Ming, LUO Zhuang-Zhu, et al. Prog. Chem., 2019, 31(4):561-570
       

    13. [13]

      CHEN Jian-Chai, YU Chang-Lin, LI Jia-De, et al. J. Inorg. Mater., 2015, 30(9):943-949
       

    14. [14]

      Liu G, Yu J C, Lu G Q, et al. Chem. Commun., 2011, 47(24):6763-6783
       

    15. [15]

      Dandapat A, Gnayem H, Sasson Y. Chem. Commun., 2016, 52(10):2161-2164
       

    16. [16]

      Zhang X, Wang X B, Wang L W, et al. ACS Appl. Mater. Interfaces, 2014, 6(10):7766-7772
       

    17. [17]

      Weng S X, Fang Z B, Wang Z F, et al. ACS Appl. Mater. Interfaces, 2014, 6(21):18423-18428
       

    18. [18]

      Shan L W, Wang G L, Liu L Z, et al. J. Mol. Catal. A:Chem., 2015, 406:145-151
       

    19. [19]

      Chen Y Y, Zhou Y, Dong Q M, et al. CrystEngComm, 2018, 20:7838-7850

    20. [20]

      Qi Y L, Zheng Y F, Yin H Y, et al. J. Alloys Compd., 2017, 712:535-542

    21. [21]

      Weng S X, Chen B B, Xie L Y, et al. J. Mater. Chem. A, 2013, 1(9):3068-3075
       

    22. [22]

      Yu C L, He H B, Fan Q Z, et al. Sci. Total Environ., 2019, 694:133727-133734

    23. [23]

      Di J, Xia J X, Ji M X, et al. ACS Appl. Mater. Interfaces, 2015, 7(36):20111-20123

    24. [24]

      Li Y, Tian Y Y, Zhang R F, et al. Inorg. Chim. Acta, 2016, 439:123-129
       

    25. [25]

      FANG Wen, HE Hong-Bo, XUE Shuang-Shuang, et al. J. Chin. Ceram. Soc., 2016, 44(5):711-719
       

    26. [26]

      Liu C, Yan C Y, Lin J Z, et al. J. Mater. Chem. A, 2015, 3(40):20167-20173
       

    27. [27]

      Sun M L, Zhao Q H, Du C F, et al. RSC Adv., 2015, 5(29):22740-22752
       

    28. [28]

      Xie T P, Xu L J, Liu C L, et al. Dalton Trans., 2014, 43(5):2211-2220
       

    29. [29]

      Duo F F, Wang Y W, Fan C M, et al. Mater. Charact., 2015, 99:8-16
       

    30. [30]

      Jiang H, Liu J K, Wang J D, et al. CrystEngComm, 2015, 17(29):5511-5521
       

    31. [31]

      He H B, Xue S S, Wu Z, et al. J. Mater. Res., 2016, 31(17):2598-2607
       

    32. [32]

      Li J, Sun S Y, Chen R, et al. Environ. Sci. Pollut. Res., 2017, 24:9556-9565
       

    33. [33]

      Yu C L, He H B, Zhou W Q, et al. Sep. Purif. Technol., 2019, 217:137-146

    34. [34]

      He H B, Xue S S, Wu Z, et al. Chin. J. Catal., 2016, 37(11):1841-1850
       

    35. [35]

      Ge L, Han C C. Appl. Catal. B, 2012, 117:268-274
       

    36. [36]

      Fu H B, Pan C S, Yao W Q, et al. J. Phys. Chem. B, 2005, 109:22432-22439
       

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(17)
  • Abstract views(2171)
  • HTML views(649)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return