Citation: HE Hong-Bo, ZHANG Meng-Fan, LIU Zhen, FAN Qi-Zhe, YANG Kai, YU Chang-Lin. Preparation by F Doping and Photocatalytic Activities of BiOCl Nanosheets with Highly Exposed (001) Facets[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1413-1420. doi: 10.11862/CJIC.2020.177
-
By using F doping, a series of BiOCl nanosheets with highly exposed (001) facets were synthesized by a solvothermal-calcination route. The fabricated bare BiOCl and F doped BiOCl nanosheets were characterized by some physicochemical methods, e.g. X-ray diffraction, N2 physical absorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and photoelectrochemical measurement. The results show that F doping with moderate content can promote the growth of (110) crystal plane and suppress the crystal size, inducing the for-mation of highly exposed (001) facets. Moreover, an obvious increase in surface area and surface -OH groups were obtained after F-doping. Under simulated sunlight irradiation, F doping obtained significant enhancement in the degradation of rhodamine B, and about 1.67 times increase over F1.0-BiOCl than that of bare BiOCl. Moreover, the degradation rate of F1.0-BiOCl was 1.24 times that of commercial P25(TiO2) in removal of acid orange Ⅱ. The main reasons for the increase of activity are that the exposed (001) facets induced by F-doping promoted dyes adsorption, and the separation of photo-generated electron-hole pair was also accelerated. Therefore, F-BiOCl nanosheets display superior photocatalytic performance for organic dyes degradation.
-
Keywords:
- BiOCl,
- F-doping,
- (001) facets,
- dye decomposition,
- photocatalysis
-
-
[1]
He H B, Luo Z Z, Tang Z Y, et al. Appl. Surf. Sci., 2019, 490:460-468
-
[2]
Liu B X, Wang J S, Wu J S, et al. J. Mater. Chem. A, 2014, 2:1947-1954
-
[3]
MA Xiao-Shuai, CHEN Fan-Yun, YU Chang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(2):217-225
-
[4]
Liu Z, Tian J, Zeng D B, et al. Mater. Res. Bull., 2017, 94:298-306
-
[5]
Li J D, Wei L F, Yu C L, et al. Appl. Surf. Sci., 2015, 358:168-174
-
[6]
Yu C L, He H B, Liu X Q, et al. Chin. J. Catal., 2019, 40(8):1212-1221
-
[7]
Chen M J, Huang Y, Chu W. Chin. J. Catal., 2019, 40(5):673-680
-
[8]
HE Hong-Bo, XUE Shuang-Shuang, YU Chang-Lin, et al. Chinese J. Inorg. Chem., 2016, 32(4):625-632
-
[9]
Liu B X, Wang J S, Li H Y, et al. J. Nanosci. Nanotechnol., 2013, 13:4117-4122
-
[10]
ZHONG Wei, XIA Ying-Fan, ZHAI Hang-Ling, et al. Chinese J. Inorg. Chem., 2020, 36(1):40-52
-
[11]
CHEN Fan-Yun, ZHANG Meng-Di, MA Xiao-Shuai, et al. Chinese J. Inorg. Chem., 2019, 35(6):1034-1040
-
[12]
HE Hong-Bo, LUO Yi-Ming, LUO Zhuang-Zhu, et al. Prog. Chem., 2019, 31(4):561-570
-
[13]
CHEN Jian-Chai, YU Chang-Lin, LI Jia-De, et al. J. Inorg. Mater., 2015, 30(9):943-949
-
[14]
Liu G, Yu J C, Lu G Q, et al. Chem. Commun., 2011, 47(24):6763-6783
-
[15]
Dandapat A, Gnayem H, Sasson Y. Chem. Commun., 2016, 52(10):2161-2164
-
[16]
Zhang X, Wang X B, Wang L W, et al. ACS Appl. Mater. Interfaces, 2014, 6(10):7766-7772
-
[17]
Weng S X, Fang Z B, Wang Z F, et al. ACS Appl. Mater. Interfaces, 2014, 6(21):18423-18428
-
[18]
Shan L W, Wang G L, Liu L Z, et al. J. Mol. Catal. A:Chem., 2015, 406:145-151
-
[19]
Chen Y Y, Zhou Y, Dong Q M, et al. CrystEngComm, 2018, 20:7838-7850
-
[20]
Qi Y L, Zheng Y F, Yin H Y, et al. J. Alloys Compd., 2017, 712:535-542
-
[21]
Weng S X, Chen B B, Xie L Y, et al. J. Mater. Chem. A, 2013, 1(9):3068-3075
-
[22]
Yu C L, He H B, Fan Q Z, et al. Sci. Total Environ., 2019, 694:133727-133734
-
[23]
Di J, Xia J X, Ji M X, et al. ACS Appl. Mater. Interfaces, 2015, 7(36):20111-20123
-
[24]
Li Y, Tian Y Y, Zhang R F, et al. Inorg. Chim. Acta, 2016, 439:123-129
-
[25]
FANG Wen, HE Hong-Bo, XUE Shuang-Shuang, et al. J. Chin. Ceram. Soc., 2016, 44(5):711-719
-
[26]
Liu C, Yan C Y, Lin J Z, et al. J. Mater. Chem. A, 2015, 3(40):20167-20173
-
[27]
Sun M L, Zhao Q H, Du C F, et al. RSC Adv., 2015, 5(29):22740-22752
-
[28]
Xie T P, Xu L J, Liu C L, et al. Dalton Trans., 2014, 43(5):2211-2220
-
[29]
Duo F F, Wang Y W, Fan C M, et al. Mater. Charact., 2015, 99:8-16
-
[30]
Jiang H, Liu J K, Wang J D, et al. CrystEngComm, 2015, 17(29):5511-5521
-
[31]
He H B, Xue S S, Wu Z, et al. J. Mater. Res., 2016, 31(17):2598-2607
-
[32]
Li J, Sun S Y, Chen R, et al. Environ. Sci. Pollut. Res., 2017, 24:9556-9565
-
[33]
Yu C L, He H B, Zhou W Q, et al. Sep. Purif. Technol., 2019, 217:137-146
-
[34]
He H B, Xue S S, Wu Z, et al. Chin. J. Catal., 2016, 37(11):1841-1850
- [35]
-
[36]
Fu H B, Pan C S, Yao W Q, et al. J. Phys. Chem. B, 2005, 109:22432-22439
-
[1]
-
-
[1]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[2]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[3]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[4]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[7]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[8]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[9]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[10]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[11]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[12]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[13]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[14]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[15]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[16]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[17]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[18]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[1]
Metrics
- PDF Downloads(17)
- Abstract views(2171)
- HTML views(649)