Citation: TU Fang-Fang, XIE Jian, GUO Feng, ZHAO Xin-Bing, WANG Yu-Ping, CHEN Dong, XIANG Jia-Yuan, CHEN Jian. Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1515-1523. doi: 10.11862/CJIC.2020.169 shu

Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte

  • Corresponding author: TU Fang-Fang, fangfangtu1990@126.com
  • Received Date: 7 March 2020
    Revised Date: 7 May 2020

Figures(4)

  • A solid composite electrolyte was prepared through a solution-casting method with polypropylene carbonate (PPC) and polyethylene oxide (PEO) as polymer blends, and Li6.4La3Zr1.4Ta0.6O12(LLZTO) particles as multifunctional fillers. The effects of LLZTO content and PPC/PEO mass ratio on the ionic conductivity of solid composite electrolyte were studied. Results show that the ionic conductivity at room temperature reached the highest value of 1.14×10-4 S·cm-1 when LLZTO content was 30%(w/w) and the mass ratio of PPC to PEO was 1:1. The incorporation of LLZTO and PPC into PEO repressed the crystallinity of polymer electrolyte, increased ionic conductivity, electrochemical stability window (4.7 V) and Li+ transference number (0.25), and reinforces interfacial stability between solid electrolyte and lithium anode. The capacity retention rates of the LiFePO4/Li cell with solid composite electrolyte remain 82% after 70 cycles at room temperature and 79% after 100 cycles at 60℃. The discharge capacity reaches 120.7 and 112.6 mAh·g-1 at 0.5C and 1C, respectively.
  • 加载中
    1. [1]

      Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3):587-603
       

    2. [2]

      Quartarone E, Mustarelli P. Chem. Soc. Rev., 2011, 40(5):2525-2540
       

    3. [3]

      ZHANG Yong-Long, XIA Hui-Ling, LIN Jiu, et al. Energy Storage Sci. Technol., 2018, 7(6):994-1002
       

    4. [4]

      Bates J B, Dudney N J, Neudecker B, et al. Solid State Ionics, 2000, 135(1/2/3/4):33-45
       

    5. [5]

      Kerman K, Luntz A, Viswanathan V, et al. J. Electrochem. Soc., 2017, 164(7):A1731-A1744
       

    6. [6]

      Zhang Z Z, Shao Y J, Lotsch B, et al. Energy Environ. Sci., 2018, 11(8):1945-1976
       

    7. [7]

      Kato Y, Hori S, Saito T, et al. Nat. Energy, 2016, 1(4):16030
       

    8. [8]

      Abhilash K P, Selvin P C, Nalini B, et al. J. Phys. Chem. Solids, 2016, 91:114-121
       

    9. [9]

      Arbi K, Jimenez R, Šalkus T, et al. Solid State Ionics, 2015, 271:28-33
       

    10. [10]

      Deng Y, Eames C, Fleutot B, et al. ACS Appl. Mater. Interfaces, 2017, 9(8):7050-7058
       

    11. [11]

      LÜ Xiao-Juan, WU Ya-Nan, MENG Fan-Li, et al. J. Ceram., 2019, 40(2):148-152
       

    12. [12]

      SUN Qiu-Shi, ZHU Chong-Jia, XIE Jian, et al. Chinese J. Inorg. Chem., 2019, 35(5):865-870
       

    13. [13]

      Thangadurai V, Kaack H, Weppner W J F. J. Am. Ceram. Soc., 2003, 86(3):437-440
       

    14. [14]

      Gao Z H, Sun H B, Fu L, et al. Adv. Mater., 2018, 30(17):1705702

    15. [15]

      Fu K, Gong Y H, Dai J Q, et al. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(26):7094-7099

    16. [16]

      Zhu P, Yan C Y, Dirican M, et al. J. Mater. Chem. A, 2018, 6(10):4279-4285
       

    17. [17]

      Liang J Y, Zeng X X, Zhang X D, et al. J. Am. Chem. Soc., 2019, 141(23):9165-9169

    18. [18]

      Zhang X, Liu T, Zhang S F, et al. J. Am. Chem. Soc., 2017, 139(39):13779-13785

    19. [19]

      Zhang J J, Zhao J H, Yue L P, et al. Adv. Energy Mater., 2015, 5(24):1501082
       

    20. [20]

      YANG Pei-Xia, CUI Wen-Yu, XING Dong-Jun, et al. Chinese J. Inorg. Chem., 2011, 27(11):2143-2149
       

    21. [21]

      Stephan A M. Eur. Polym. J., 2006, 42(1):21-42

    22. [22]

      Chen L, Li Y T, Li S P, et al. Nano Energy, 2018, 46:176-184
       

    23. [23]

      Yue L P, Ma J, Zhang J J, et al. Energy Storage Mater., 2016, 5:139-164

    24. [24]

      Zhang Y H, Lu W, Cong L N, et al. J. Power Sources, 2019, 420:63-72

    25. [25]

      DONG Tian-Tian, ZHANG Jian-Jun, CHAI Jing-Chao, et al. Acta Polym. Sin., 2017, 6:906-921

    26. [26]

      Huang H J, Ding F, Zhong H, et al. J. Mater. Chem. A, 2018, 6(20):9539-9549

    27. [27]

      Yu X Y, Xiao M, Wang S J, et al. J. Appl. Polym. Sci., 2010, 115(5):2718-2722
       

    28. [28]

      Logéat A, Köhler T, Eisele U, et al. Solid State Ionics, 2012, 206(3):33-38
       

    29. [29]

      Zhao Y R, Wu C, Peng G, et al. J. Power Sources, 2016, 301:47-53
       

    30. [30]

      QI De-Jiang, BI Xiao-Guo, RU Hong-Qiang. J. Mater. Metall., 2011, 10(2):125-135

    31. [31]

      Zheng J, Hu Y Y. ACS Appl. Mater. Interfaces, 2018, 10(4):4113-4120
       

    32. [32]

      Li Z, Huang H M, Zhu J K, et al. ACS Appl. Mater. Interfaces, 2019, 11(1):784-791
       

    33. [33]

      Chen F, Yang D J, Zha W P, et al. Electrochim. Acta, 2017, 258:1106-1114

    34. [34]

      GUO Tian, CHEN Yu-Qi, HE Hong-Cai, et al. Electron. Compon. Mater., 2019, 38(7):25-31
       

    35. [35]

      Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38):19218-19253
       

    36. [36]

      Zhang J J, Zang X, Wen H J, et al. J. Mater. Chem. A, 2017, 5(10):4940-4948
       

    37. [37]

      Zhang Y H, Chen F, Tu R, et al. J. Power Sources, 2014, 268:960-964
       

    38. [38]

      Zhou J, Fedkiw P S. Solid State Ionics, 2004, 166(3/4):275-293
       

    39. [39]

      Evans J, Vincent C A, Bruce P G. Polymer, 1987, 28(13):2324-2328
       

    40. [40]

      Chen L, Liu Y C, Fan L Z. J. Electrochem. Soc., 2017, 164(9):A1834-A1840

    41. [41]

      Li D, Chen L, Wang T S, et al. ACS Appl. Mater. Interfaces, 2018, 10(8):7069-7078
       

    42. [42]

      Zhang J X, Zhao N, Zhang M, et al. Nano Energy, 2016, 28:447-454
       

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(42)
  • Abstract views(3092)
  • HTML views(1338)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return