Citation: TANG Juan, SUN Jing, ZHOU Chen, ZHAO Ying, GUO Xin, YIN Yu-Ting. Effects of Rare Earths (Gd3+, La3+) on Fluorescence and Temperature Sensitivity of Eu(p-MOBA)3phen/PMMA[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1485-1491. doi: 10.11862/CJIC.2020.145 shu

Effects of Rare Earths (Gd3+, La3+) on Fluorescence and Temperature Sensitivity of Eu(p-MOBA)3phen/PMMA

  • Corresponding author: SUN Jing, sj-cust@126.com
  • Received Date: 7 April 2020
    Revised Date: 22 April 2020

Figures(10)

  • The different rare earth (Gd3+, La3+) doped Eu(p-MOBA)3phen probe molecules were prepared by using rare earth oxides (Eu2O3, Gd2O3, La2O3), p-methoxybenzoic acid (p-MOBA) and phenanthroline (phen). The different rare earth (Gd3+, La3+) doped Eu(p-MOBA)3phen/PMMA temperature sensitive paints (TSPs) were fabricated by mixing the probe molecules with methyl methacrylate (MMA) and initiating polymerization with benzoyl peroxide (BPO). The morphology, structure, luminescence properties of the probe molecules, and the fluorescence temperature quenching property of the TSPs were characterized by scanning electron microscopy, UV-Vis absorption spectra, infrared spectrometer and fluorescence spectra. The infrared spectrum, UV-Vis absorption spectra and scanning electron microscopy spectra show that Eu3+ was successfully coordinated with the ligands p-MOBA and phen, and the structure of Eu(p-MOBA)3phen was not changed when doped with rare earth ions (Gd3+, La3+), indicating that the doping of rare earth ions (Gd3+, La3+) partially replaced Eu3+. The fluorescence spectrum shows that the addition of rare earth ions (Gd3+, La3+) have a gain effect on the luminescence of Eu(p-MOBA)3phen, and the corresponding TSPs have good fluorescence temperature quenching property in the temperature range of 50~100℃. Compared with La3+ doped Eu(p-MOBA)3phen/PMMA, Gd3+ doped Eu(p-MOBA)3phen/PMMA has stronger fluorescence emission and higher temperature sensitivity. It can be seen that different rare earths (Gd3+, La3+) have different effects on the fluorescence and temperature sensitivity properties of Eu(p-MOBA)3phen/PMMA.
  • 加载中
    1. [1]

      Matsuda Y, Kameya T, Suzuki Y, et al. Sens. Actuators B, 2017, 250:563-568  doi: 10.1016/j.snb.2017.04.188

    2. [2]

      Ghorbani-Tari Z, Chen Y J, Liu Y Z. Appl. Therm. Eng., 2017, 122:697-705  doi: 10.1016/j.applthermaleng.2017.05.040

    3. [3]

      Ghorbani-Tari Z, Chen Y J, Liu Y Z. Exp. Therm Fluid Sci., 2018, 98:56-67  doi: 10.1016/j.expthermflusci.2018.05.014

    4. [4]

      Tan C L, Wang Q M. Inorg. Chem. Commun., 2011, 14(4):515-518
       

    5. [5]

      Kurits I, Lewis M J. J. Thermophys. Heat Transf., 2009, 23(2):256-266
       

    6. [6]

      Wang X D, Wolfbeis O S, Meier R J. Chem. Soc. Rev., 2013, 42(19):7834-7869  doi: 10.1039/c3cs60102a

    7. [7]

      Liu T S, Montefort J, Schick N, et al. Int. J. Heat Mass Trans-fer, 2019, 137:337-348  doi: 10.1016/j.ijheatmasstransfer.2019.03.134

    8. [8]

      Ozawa H. Phys. Fluids, 2016, 28(4):046103

    9. [9]

      Li Y, Li Z M. Procedia Eng., 2015, 99:1152-1157  doi: 10.1016/j.proeng.2014.12.697

    10. [10]

      Ozawa H, Laurence S J, Schramm J M, et al. Exp. Fluids, 2015, 56(1):1853  doi: 10.1007/s00348-014-1853-y

    11. [11]

      Xiong Y J, Huang P L, Zhang X W, et al. Inorg. Chem. Com-mun., 2015, 56:53-57  doi: 10.1016/j.inoche.2015.03.023

    12. [12]

      Schäferling M. Angew. Chem. Int. Ed., 2012, 51(15):3532-3554  doi: 10.1002/anie.201105459

    13. [13]

      Zhang W J, Zou X F, Zhao J F. J. Mater. Chem. C, 2015, 3(6):1294-1300  doi: 10.1039/C4TC02172J

    14. [14]

      ZHANG Min, SUN Jing, LIU Hui-Min, et al. Chinese J. Inorg. Chem., 2016, 32(3):421-426
       

    15. [15]

      Zhang J J, Xu S L, Ren N, et al. Russ. J. Coord. Chem., 2007, 33:611-615  doi: 10.1134/S1070328407080118

    16. [16]

      SONG Ya-Jiao, SUN Jing, ZHU Peng, et al. Chinese J. Inorg. Chem., 2013, 29(6):1171-1175
       

    17. [17]

      LI Xia, REN Gui-Fen, LIU Meng-You, et al. Spectrosc Spec Anal., 2004, 24(11):1410-1411  doi: 10.3321/j.issn:1000-0593.2004.11.036

    18. [18]

      SONG Huan-Huan, SUN Jing, PAN Liu, et al. J. Chin. Rare Earth Soc., 2015, 33(1):32-38
       

    19. [19]

      BI Guan, SUN Jing, ZHOU Chen, et al. Chinese J. Inorg. Chem., 2019, 35(2):203-208
       

    20. [20]

      LU Si-Yu, LIU Xu-Ri, BI Guan, et al. Chinese J. Inorg. Chem., 2018, 34(4):683-688
       

  • 加载中
    1. [1]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    4. [4]

      Qiaorong RU . Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121

    5. [5]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    6. [6]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    7. [7]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    8. [8]

      Wenwei Zeng Qingyu Sun Mengxiang Liang Lirong Lin Laiying Zhang . Unveiling Anti-Counterfeiting Secrets: Excitation-Dependent Luminescence in Sb3+-Doped Perovskite Materials. University Chemistry, 2026, 41(2): 375-384. doi: 10.12461/PKU.DXHX202503036

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    17. [17]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    18. [18]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    19. [19]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    20. [20]

      Youbo HUDonggang LIChanghua SUNZhenzhong LUSongjun GU . Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004

Metrics
  • PDF Downloads(3)
  • Abstract views(1949)
  • HTML views(352)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return